0

我正在尝试从 7 百万的 Twitter 数据中提取主题。我假设每条推文都是一个文档。因此,我将所有推文存储在一个文件中,其中每一行(或推文)都被视为一个文档。我将此文件用作 Mallet api 的输入文件。

public static void LDAModel(int numofK,int numbofIteration,int numberofThread,String outputDir,InstanceList instances) throws Exception
{
   // Create a model with 100 topics, alpha_t = 0.01, beta_w = 0.01
    //  Note that the first parameter is passed as the sum over topics, while
    //  the second is the parameter for a single dimension of the Dirichlet prior.
    int numTopics = numofK;
    ParallelTopicModel model = new ParallelTopicModel(numTopics, 1.0, 0.01);

    model.addInstances(instances);

    // Use two parallel samplers, which each look at one half the corpus and combine
    //  statistics after every iteration.
    model.setNumThreads(numberofThread);

    // Run the model for 50 iterations and stop (this is for testing only, 
    //  for real applications, use 1000 to 2000 iterations)
    model.setNumIterations(numbofIteration);
    model.estimate();
    // Show the words and topics in the first instance

    // The data alphabet maps word IDs to strings
    Alphabet dataAlphabet = instances.getDataAlphabet();

    FeatureSequence tokens = (FeatureSequence) model.getData().get(0).instance.getData();
    LabelSequence topics = model.getData().get(0).topicSequence;

    Formatter out = new Formatter(new StringBuilder(), Locale.US);
    for (int position = 0; position < tokens.getLength(); position++) {
       // out.format("%s-%d ", dataAlphabet.lookupObject(tokens.getIndexAtPosition(position)), topics.getIndexAtPosition(position));
         out.format("%s-%d ", dataAlphabet.lookupObject(tokens.getIndexAtPosition(position)), topics.getIndexAtPosition(position));

    }
    System.out.println(out);

    // Estimate the topic distribution of the first instance, 
    //  given the current Gibbs state.
    double[] topicDistribution = model.getTopicProbabilities(0);

    // Get an array of sorted sets of word ID/count pairs
    ArrayList<TreeSet<IDSorter>> topicSortedWords = model.getSortedWords();

    // Show top 10 words in topics with proportions for the first document
    String topicsoutput="";
    for (int topic = 0; topic < numTopics; topic++) {
        Iterator<IDSorter> iterator = topicSortedWords.get(topic).iterator();

        out = new Formatter(new StringBuilder(), Locale.US);
        out.format("%d\t%.3f\t", topic, topicDistribution[topic]);
        int rank = 0;
        while (iterator.hasNext() && rank < 10) {
            IDSorter idCountPair = iterator.next();
            out.format("%s (%.0f) ", dataAlphabet.lookupObject(idCountPair.getID()), idCountPair.getWeight());
            //out.format("%s ", dataAlphabet.lookupObject(idCountPair.getID()));
            rank++;
        }
        System.out.println(out);

    }


    // Create a new instance with high probability of topic 0
    StringBuilder topicZeroText = new StringBuilder();
    Iterator<IDSorter> iterator = topicSortedWords.get(0).iterator();

    int rank = 0;
    while (iterator.hasNext() && rank < 10) {
        IDSorter idCountPair = iterator.next();
        topicZeroText.append(dataAlphabet.lookupObject(idCountPair.getID()) + " ");
        rank++;
    }

    // Create a new instance named "test instance" with empty target and source fields.
    InstanceList testing = new InstanceList(instances.getPipe());
    testing.addThruPipe(new Instance(topicZeroText.toString(), null, "test instance", null));

    TopicInferencer inferencer = model.getInferencer();
    double[] testProbabilities = inferencer.getSampledDistribution(testing.get(0), 10, 1, 5);
    System.out.println("0\t" + testProbabilities[0]);


    File pathDir = new File(outputDir + File.separator+ "NumofTopics"+numTopics);   //FIXME replace all strings with constants
pathDir.mkdir();
    String DirPath = pathDir.getPath();
    String stateFile = DirPath+File.separator+"output_state.gz";
    String outputDocTopicsFile = DirPath+File.separator+"output_doc_topics.txt";
    String topicKeysFile = DirPath+File.separator+"output_topic_keys";
    PrintWriter writer=null;
    String topicKeysFile_fromProgram = DirPath+File.separator+"output_topic";

    try {
        writer = new PrintWriter(topicKeysFile_fromProgram, "UTF-8");
        writer.print(topicsoutput);
        writer.close();
    } catch (Exception e) {
            e.printStackTrace();
    }

    model.printTopWords(new File(topicKeysFile), 11, false);           
    model.printDocumentTopics(new File (outputDocTopicsFile));
    model.printState(new File (stateFile));

}
 public static void main(String[] args) throws Exception{

    // Begin by importing documents from text to feature sequences
    ArrayList<Pipe> pipeList = new ArrayList<Pipe>();

    // Pipes: lowercase, tokenize, remove stopwords, map to features
    pipeList.add( new CharSequenceLowercase() );
    pipeList.add( new CharSequence2TokenSequence(Pattern.compile("\\p{L}[\\p{L}\\p{P}]+\\p{L}")) );
    pipeList.add( new TokenSequenceRemoveStopwords(new File("H:\\Data\\stoplists\\en.txt"), "UTF-8", false, false, false) );
    pipeList.add( new TokenSequence2FeatureSequence() );
    InstanceList instances = new InstanceList (new SerialPipes(pipeList));

    Reader fileReader = new InputStreamReader(new FileInputStream(new File("E:\\Thesis Data\\DataForLDA\\freshnewData\\cleanTweets.txt")), "UTF-8");
    instances.addThruPipe(new CsvIterator (fileReader, Pattern.compile("^(\\S*)[\\s,]*(\\S*)[\\s,]*(.*)$"),
                                           3, 2, 1)); // data, label, name fields

    int numberofTopic=5;
    int numberofIteration=50;
    int numberofThread=6;
    String outputDir="J:\\Topics\\";

    //int numberofTopic=5;
     LDAModel(numberofTopic,numberofIteration,numberofThread,outputDir,instances); 
    TimeUnit.SECONDS.sleep(30);
    numberofTopic=10;  }       

我从上面的程序中得到了三个文件。1.状态文件 2.主题比例文件 3.关键主题列表

我想知道每个主题分配的文档数量。例如,我从关键主题列表文件中得到以下输出

  1. 0.004 奥巴马 (5471) 加拿大 (5283) 女性 (5152) 投票 (4879) 警察 (3965)

其中第一列表示主题序号,第二列表示主题权重,第三列表示该主题下的单词(单词数)

在这里,我得到了这个主题下的单词数,但我也想显示我得到这个主题的文档数量。将此输出显示为像这样的单独文件会很有帮助。例如,

话题一:doc1(80%) doc2(70%).......

任何人都可以为此提供一些想法或任何源代码吗?谢谢。

4

1 回答 1

0

您要查找的信息包含在您提到的“2.主题比例”文件中。请注意,每个文档都包含具有一定百分比的每个主题(尽管一个主题的百分比可能很大,而其他主题的百分比可能非常小)。您必须决定要从文件中提取的内容: 主要主题(在第 3 列中);占主导地位的主题,但只有当百分比至少为 50% 时(有时,两个主题的百分比几乎相同)......

于 2015-06-15T09:11:03.197 回答