3

在 Apache Flink 中,如果我在一个主键上加入两个数据集,我会得到一个元组 2,其中包含每个数据集的相应数据集条目。

问题是,当将map()方法应用于输出的元组 2 数据集时,它看起来并不好,特别是如果两个数据集的条目都具有大量特征。

在两个输入数据集中使用元组可以得到如下代码:

var in1: DataSet[(Int, Int, Int, Int, Int)] = /* */
var in2: DataSet[(Int, Int, Int, Int)] = /* */

val out = in1.join(in2).where(0, 1, 2).equalTo(0, 1, 2)
  .map(join => (join._1._1, join._1._2, join._1._3,
                    join._1._4, join._1._5, join._2._4))

我不介意使用 POJO 或案例类,但我不知道这会如何使它变得更好。

问题 1:有没有一种很好的方法来扁平化元组 2?例如使用另一个运算符。

问题2:如何处理同一个键上3个数据集的连接?它会使示例源更加混乱。

感谢您的帮助。

4

1 回答 1

6

您可以直接在每对连接元素上应用连接功能,例如

val leftData: DataSet[(String, Int, Int)] = ...
val rightData: DataSet[(String, Int)] = ...
val joined: DataSet[(String, Int, Int)] = leftData
      .join(rightData).where(0).equalTo(0) { (l, r) => (l._1, l._2, l._3 + r._2) ) }

为了回答第二个问题,Flink 只处理二元连接。但是,如果您提供有关函数行为的提示,Flink 的优化器可以避免进行不必要的洗牌。前向字段注释告诉优化器,某些字段(例如连接键)没有被您的连接函数修改,并且可以重用现有的分区和排序。

于 2015-06-11T18:24:28.250 回答