我有这个错误,我试图在互联网上看一下,但我一无所知。
我用 Caffe 成功地训练了我的网络,准确率约为 82%。
现在我正在尝试通过以下代码使用图像进行尝试:
python python/classify.py --model_def examples/imagenet/imagenet_deploy.prototxt --pretrained_model caffe_mycaffe_train_iter_10000.caffemodel --images_dim 64,64 data/mycaffe/testingset/cat1/113.png foo --mean_file data/mycaffe/mycaffe_train_mean.binaryproto
是的,我的图像是 64x64,
这些是我得到的最后几行:
I0610 15:33:44.868100 28657 net.cpp:194] conv3 不需要反向计算。I0610 15:33:44.868110 28657 net.cpp:194] norm2 不需要反向计算。I0610 15:33:44.868120 28657 net.cpp:194] pool2 不需要反向计算。I0610 15:33:44.868130 28657 net.cpp:194] relu2 不需要反向计算。I0610 15:33:44.868142 28657 net.cpp:194] conv2 不需要反向计算。I0610 15:33:44.868152 28657 net.cpp:194] norm1 不需要反向计算。I0610 15:33:44.868162 28657 net.cpp:194] pool1 不需要反向计算。I0610 15:33:44.868173 28657 net.cpp:194] relu1 不需要反向计算。I0610 15:33:44.868182 28657 net.cpp:194] conv1 不需要反向计算。I0610 15:33:44.868192 28657 net.cpp:235] 此网络产生输出 fc8_pascal I0610 15:33:44.868214 28657 net.cpp:482] 收集学习率和权重衰减。I0610 15:33:44.868238 28657 net.cpp:247] 网络初始化完成。I0610 15:33:44.868249 28657 net.cpp:248] 数据所需的内存:3136120 F0610 15:33:45.025965 28657 blob.cpp:458] 检查失败:ShapeEquals(proto) 形状不匹配(未设置整形) * 检查失败堆栈跟踪:* 中止(核心转储)
我试图不设置 --mean_file 和更多的东西,但我的镜头已经结束了。
这是我的 imagenet_deploy.prototxt,我在一些参数中进行了修改以进行调试,但没有任何效果。
name: "MyCaffe"
input: "data"
input_dim: 10
input_dim: 3
input_dim: 64
input_dim: 64
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
convolution_param {
num_output: 64
kernel_size: 11
stride: 4
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm1"
type: "LRN"
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "norm1"
top: "conv2"
convolution_param {
num_output: 64
pad: 2
kernel_size: 5
group: 2
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm2"
type: "LRN"
bottom: "pool2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "norm2"
top: "conv3"
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
group: 2
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
inner_product_param {
num_output: 4096
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
inner_product_param {
num_output: 4096
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8_pascal"
type: "InnerProduct"
bottom: "fc7"
top: "fc8_pascal"
inner_product_param {
num_output: 3
}
}
有人可以给我一个线索吗?非常感谢。
C++ 和 它们提供的分类箱也是如此:
F0610 18:06:14.975601 7906 blob.cpp:455] 检查失败:ShapeEquals(proto) 形状不匹配(未设置重塑) * 检查失败堆栈跟踪:* @ 0x7f0e3c50761c google::LogMessage::Fail() @ 0x7f0e3c507568 google:: LogMessage::SendToLog() @ 0x7f0e3c506f6a google::LogMessage::Flush() @ 0x7f0e3c509f01 google::LogMessageFatal::~LogMessageFatal() @ 0x7f0e3c964a80 caffe::Blob<>::FromProto() @ 0x7f0e3c<89576e caffe::> ::CopyTrainedLayersFrom() @ 0x7f0e3c8a10d2 caffe::Net<>::CopyTrainedLayersFrom() @ 0x406c32 Classifier::Classifier() @ 0x403d2b main @ 0x7f0e3b124ec5 (unknown) @ 0x4041ce (unknown) Aborted (core dumped)