所以我有一个 Spark-Cassandra 集群,我试图在上面执行 sql 查询。我用 sbt 组件构建了一个 jar,然后用 spark-submit 提交它。当我不使用 spark-sql 时,这可以正常工作。当我使用 spark sql 时出现错误,以下是输出:
2
CassandraRow{key: key1, value: 1}
3.0
Exception in thread "main" java.lang.NoSuchMethodError: org.apache.spark.sql.catalyst.trees.LeafNode$class.children(Lorg/apache/spark/sql/catalyst/trees/LeafNode;)Lscala/collection/Seq;
at org.apache.spark.sql.cassandra.CassandraTableScan.children(CassandraTableScan.scala:19)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5$$anonfun$apply$6.apply(TreeNode.scala:280)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
at scala.collection.AbstractTraversable.map(Traversable.scala:105)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:279)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
at scala.collection.AbstractIterator.to(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildrenUp(TreeNode.scala:292)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:247)
at org.apache.spark.sql.execution.AddExchange.apply(Exchange.scala:128)
at org.apache.spark.sql.execution.AddExchange.apply(Exchange.scala:124)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:61)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:59)
at scala.collection.IndexedSeqOptimized$class.foldl(IndexedSeqOptimized.scala:51)
at scala.collection.IndexedSeqOptimized$class.foldLeft(IndexedSeqOptimized.scala:60)
at scala.collection.mutable.WrappedArray.foldLeft(WrappedArray.scala:34)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:59)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:51)
at scala.collection.immutable.List.foreach(List.scala:318)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.apply(RuleExecutor.scala:51)
at org.apache.spark.sql.SQLContext$QueryExecution.executedPlan$lzycompute(SQLContext.scala:1085)
at org.apache.spark.sql.SQLContext$QueryExecution.executedPlan(SQLContext.scala:1085)
at org.apache.spark.sql.DataFrame.rdd(DataFrame.scala:889)
at org.apache.spark.sql.DataFrame.foreach(DataFrame.scala:797)
at CassSparkTest$.main(CassSparkTest.scala:22)
at CassSparkTest.main(CassSparkTest.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:569)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:166)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:189)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:110)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
这是这项工作的scala代码,非常简单:
import org.apache.spark.{SparkContext, SparkConf}
import com.datastax.spark.connector._
import org.apache.spark.sql.cassandra.CassandraSQLContext
import org.apache.spark.sql._
object CassSparkTest {
def main(args: Array[String]) {
val conf = new SparkConf(true)
.set("spark.cassandra.connection.host", "127.0.0.1")
val sc = new SparkContext("spark://192.168.10.11:7077", "test", conf)
val rdd = sc.cassandraTable("test", "kv")
println(rdd.count)
println(rdd.first)
println(rdd.map(_.getInt("value")).sum)
val sqlC = new CassandraSQLContext(sc)
val sqlText = "SELECT * FROM test.kv"
val df = sqlC.sql(sqlText)
df.show()
df.foreach(println)
}
}
如您所见,spark 使用 sc.cassandraTable("test", "kv") 成功创建了一个 rdd,它能够获取计数、第一个值和总和。
当我运行 sql 查询时,我试图在 cqlsh 上运行 spark-sql,这是我得到的结果:
cqlsh> select * from test.kv;
key | value
------+-------
key1 | 1
key2 | 2
(2 rows)
这是 build.sbt 文件,一个包含 spark-cassandra-connector 的胖 jar 被保存在 lib 文件夹中,因此它被 sbt 作为 unmanagedDependancy 自动添加到类路径中(我不认为构建文件是考虑的问题我已经成功地创建了一个基于 C* 表的 rdd 并在其上使用了方法)
lazy val root = (project in file(".")).
settings(
name := "CassSparkTest",
version := "1.0"
)
libraryDependencies ++= Seq(
"com.datastax.cassandra" % "cassandra-driver-core" % "2.1.5" % "provided",
"org.apache.cassandra" % "cassandra-thrift" % "2.1.5" % "provided",
"org.apache.cassandra" % "cassandra-clientutil" % "2.1.5" % "provided",
//"com.datastax.spark" %% "spark-cassandra-connector" % "1.3.0-M1" % "provided",
"org.apache.spark" %% "spark-core" % "1.3.0" % "provided",
"org.apache.spark" %% "spark-streaming" % "1.3.0" % "provided",
"org.apache.spark" %% "spark-sql" % "1.3.0" % "provided"
)