我相信有两种方法可以从gamObject
library('mgcv')
data <- data.frame('x'=c(1,2,3,4,5), 'y'=c(1,0,0,0,1))
g <- gam(y~s(x, k = 4),family = 'binomial', data = data, scale = 0.5)
plot(g)
(option1 <- predict(g, type = "lpmatrix"))
# (Intercept) s(x).1 s(x).2 s(x).3
# 1 1 1.18270529 -0.39063809 -1.4142136
# 2 1 0.94027407 0.07402655 -0.7071068
# 3 1 -0.03736554 0.32947477 0.0000000
# 4 1 -0.97272283 0.21209396 0.7071068
# 5 1 -1.11289099 -0.22495720 1.4142136
# attr(,"model.offset")
# [1] 0
(option2 <- model.matrix.gam(g))
# (Intercept) s(x).1 s(x).2 s(x).3
# 1 1 1.18270529 -0.39063809 -1.4142136
# 2 1 0.94027407 0.07402655 -0.7071068
# 3 1 -0.03736554 0.32947477 0.0000000
# 4 1 -0.97272283 0.21209396 0.7071068
# 5 1 -1.11289099 -0.22495720 1.4142136
# attr(,"model.offset")
# [1] 0