0

我尝试编写一些简单的基于 akka-http 和 akka-streams 的应用程序来处理 http 请求,总是使用一个预编译流,因为我计划在我的 requestProcessor 流中使用带有背压的长时间处理

我的申请代码:

import akka.actor.{ActorSystem, Props}
import akka.http.scaladsl._
import akka.http.scaladsl.server.Directives._
import akka.http.scaladsl.server._
import akka.stream.ActorFlowMaterializer
import akka.stream.actor.ActorPublisher
import akka.stream.scaladsl.{Sink, Source}

import scala.annotation.tailrec
import scala.concurrent.Future

object UserRegisterSource {
  def props: Props = Props[UserRegisterSource]

  final case class RegisterUser(username: String)

}

class UserRegisterSource extends ActorPublisher[UserRegisterSource.RegisterUser] {

  import UserRegisterSource._
  import akka.stream.actor.ActorPublisherMessage._

  val MaxBufferSize = 100
  var buf = Vector.empty[RegisterUser]

  override def receive: Receive = {
    case request: RegisterUser =>
      if (buf.isEmpty && totalDemand > 0)
        onNext(request)
      else {
        buf :+= request
        deliverBuf()
      }
    case Request(_) =>
      deliverBuf()
    case Cancel =>
      context.stop(self)
  }

  @tailrec final def deliverBuf(): Unit =
    if (totalDemand > 0) {
      if (totalDemand <= Int.MaxValue) {
        val (use, keep) = buf.splitAt(totalDemand.toInt)
        buf = keep
        use foreach onNext
      } else {
        val (use, keep) = buf.splitAt(Int.MaxValue)
        buf = keep
        use foreach onNext
        deliverBuf()
      }
    }
}

object Main extends App {
  val host = "127.0.0.1"
  val port = 8094

  implicit val system = ActorSystem("my-testing-system")
  implicit val fm = ActorFlowMaterializer()
  implicit val executionContext = system.dispatcher

  val serverSource: Source[Http.IncomingConnection, Future[Http.ServerBinding]] = Http(system).bind(interface = host, port = port)

  val mySource = Source.actorPublisher[UserRegisterSource.RegisterUser](UserRegisterSource.props)
  val requestProcessor = mySource
    .mapAsync(1)(fakeSaveUserAndReturnCreatedUserId)
    .to(Sink.head[Int])
    .run()

  val route: Route =
    get {
      path("test") {
        parameter('test) { case t: String =>
          requestProcessor ! UserRegisterSource.RegisterUser(t)

          ???
        }
      }
    }

  def fakeSaveUserAndReturnCreatedUserId(param: UserRegisterSource.RegisterUser): Future[Int] =
    Future.successful {
      1
    }

  serverSource.to(Sink.foreach {
    connection =>
      connection handleWith Route.handlerFlow(route)
  }).run()
}

我找到了有关如何创建可以动态接受要处理的新项目的 Source 的解决方案,但是我可以找到有关如何在我的路由中获取流执行结果的任何解决方案

4

1 回答 1

2

您的问题的直接答案是为每个 HttpRequest 实现一个新的 Stream 并用于Sink.head获取您正在寻找的值。修改您的代码:

val requestStream = 
  mySource.map(fakeSaveUserAndReturnCreatedUserId)
          .to(Sink.head[Int]) 
          //.run() - don't materialize here

val route: Route =
  get {
    path("test") {
      parameter('test) { case t: String =>
        //materialize a new Stream here
        val userIdFut : Future[Int] = requestStream.run()

        requestProcessor ! UserRegisterSource.RegisterUser(t)

        //get the result of the Stream
        userIdFut onSuccess { case userId : Int => ...}
      }
    }
  }

但是,我认为你的问题是不恰当的。在您的代码示例中,您使用 akka Stream 的唯一目的是创建一个新的 UserId。Futures 可以轻松解决这个问题,而无需物化 Stream(以及所有伴随的开销):

val route: Route =
  get {
    path("test") {
      parameter('test) { case t: String =>
        val user = RegisterUser(t)

        fakeSaveUserAndReturnCreatedUserId(user) onSuccess { case userId : Int =>
          ...
        }
      }
    }
  }

如果您想限制并发调用的数量,fakeSaveUserAndReturnCreateUserId那么您可以创建一个ExecutionContext具有已定义 ThreadPool 大小的线程池,如该问题的答案中所述,并使用该 ExecutionContext 来创建期货:

val ThreadCount = 10 //concurrent queries

val limitedExecutionContext =
  ExecutionContext.fromExecutor(Executors.newFixedThreadPool(ThreadCount))

def fakeSaveUserAndReturnCreatedUserId(param: UserRegisterSource.RegisterUser): Future[Int] =
Future { 1 }(limitedExecutionContext)
于 2015-11-04T12:57:45.567 回答