367

我正在尝试编写一个 C++ 程序,该程序接受用户的以下输入来构造矩形(2 到 5 之间):高度、宽度、x-pos、y-pos。所有这些矩形都将平行于 x 和 y 轴存在,也就是说,它们的所有边都将具有 0 或无穷大的斜率。

我试图实现这个问题中提到的内容,但我运气不佳。

我当前的实现执行以下操作:

// Gets all the vertices for Rectangle 1 and stores them in an array -> arrRect1
// point 1 x: arrRect1[0], point 1 y: arrRect1[1] and so on...
// Gets all the vertices for Rectangle 2 and stores them in an array -> arrRect2

// rotated edge of point a, rect 1
int rot_x, rot_y;
rot_x = -arrRect1[3];
rot_y = arrRect1[2];
// point on rotated edge
int pnt_x, pnt_y;
pnt_x = arrRect1[2]; 
pnt_y = arrRect1[3];
// test point, a from rect 2
int tst_x, tst_y;
tst_x = arrRect2[0];
tst_y = arrRect2[1];

int value;
value = (rot_x * (tst_x - pnt_x)) + (rot_y * (tst_y - pnt_y));
cout << "Value: " << value;  

但是我不太确定(a)我是否已经正确实现了我链接到的算法,或者我是否确实做了如何解释这个?

有什么建议么?

4

21 回答 21

778
if (RectA.Left < RectB.Right && RectA.Right > RectB.Left &&
     RectA.Top > RectB.Bottom && RectA.Bottom < RectB.Top ) 

或者,使用笛卡尔坐标

(X1是左坐标,X2是右坐标,从左到右增加,Y1是上坐标,Y2是下坐标,从下到上增加——如果这不是你的坐标系[例如,大多数计算机有Y方向反转],交换下面的比较)...

if (RectA.X1 < RectB.X2 && RectA.X2 > RectB.X1 &&
    RectA.Y1 > RectB.Y2 && RectA.Y2 < RectB.Y1) 

假设你有 Rect A 和 Rect B。证明是矛盾的。四个条件中的任何一个都保证不存在重叠

  • 条件 1。如果 A 的左边缘在 B 的右边缘的右侧,则 - 则 A 完全在 B 的右侧
  • 条件 2。如果 A 的右边缘在 B 的左边缘的左侧, - 那么 A 完全在 B 的左侧
  • 条件 3。如果 A 的上边缘低于 B 的下边缘,则 - 则 A 完全低于 B
  • 条件 4。如果 A 的底边高于 B 的顶边, - 那么 A 完全高于 B

所以非重叠的条件是

非重叠 => Cond1 或 Cond2 或 Cond3 或 Cond4

因此,重叠的充分条件是相反的。

重叠 => 非(Cond1 或 Cond2 或 Cond3 或 Cond4)

德摩根定律说
Not (A or B or C or D)Not A And Not B And Not C And Not D
使用德摩根相同,我们有

非 Cond1 且非 Cond2 且非 Cond3 且非 Cond4

这相当于:

  • A 的左边缘到 B 的右边缘的左侧,[ RectA.Left < RectB.Right] 和
  • A 的右边缘到 B 的左边缘的右侧,[ RectA.Right > RectB.Left],以及
  • A 的顶部高于 B 的底部,[ RectA.Top > RectB.Bottom] 和
  • A 的底部低于 B 的顶部 [ RectA.Bottom < RectB.Top]

注 1:很明显,同样的原理可以扩展到任意数量的维度。
注意2:计算一个像素的重叠也应该是相当明显的,将该边界上的<和/或更改为a或a 。注意 3:当使用笛卡尔坐标 (X, Y) 时,此答案基于标准代数笛卡尔坐标(x 从左到右增加,Y 从下到上增加)。显然,如果计算机系统可能以不同的方式机械化屏幕坐标(例如,从上到下增加 Y,或从右到左增加 X),则需要相应地调整语法/><=>=

于 2008-11-20T18:25:30.603 回答
126
struct rect
{
    int x;
    int y;
    int width;
    int height;
};

bool valueInRange(int value, int min, int max)
{ return (value >= min) && (value <= max); }

bool rectOverlap(rect A, rect B)
{
    bool xOverlap = valueInRange(A.x, B.x, B.x + B.width) ||
                    valueInRange(B.x, A.x, A.x + A.width);

    bool yOverlap = valueInRange(A.y, B.y, B.y + B.height) ||
                    valueInRange(B.y, A.y, A.y + A.height);

    return xOverlap && yOverlap;
}
于 2008-11-20T18:36:20.627 回答
32
struct Rect
{
    Rect(int x1, int x2, int y1, int y2)
    : x1(x1), x2(x2), y1(y1), y2(y2)
    {
        assert(x1 < x2);
        assert(y1 < y2);
    }

    int x1, x2, y1, y2;
};

bool
overlap(const Rect &r1, const Rect &r2)
{
    // The rectangles don't overlap if
    // one rectangle's minimum in some dimension 
    // is greater than the other's maximum in
    // that dimension.

    bool noOverlap = r1.x1 > r2.x2 ||
                     r2.x1 > r1.x2 ||
                     r1.y1 > r2.y2 ||
                     r2.y1 > r1.y2;

    return !noOverlap;
}
于 2008-11-20T18:53:28.190 回答
25

检查一个矩形是否完全在另一个矩形之外更容易,所以如果它是

在左侧...

(r1.x + r1.width < r2.x)

或者在右边...

(r1.x > r2.x + r2.width)

或在顶部...

(r1.y + r1.height < r2.y)

或在底部...

(r1.y > r2.y + r2.height)

第二个矩形,它不可能与它发生碰撞。因此,要拥有一个返回布尔值的函数,表示矩形碰撞的天气,我们只需通过逻辑 OR 组合条件并否定结果:

function checkOverlap(r1, r2) : Boolean
{ 
    return !(r1.x + r1.width < r2.x || r1.y + r1.height < r2.y || r1.x > r2.x + r2.width || r1.y > r2.y + r2.height);
}

要仅在触摸时已经收到阳性结果,我们可以将“<”和“>”更改为“<=”和“>=”。

于 2010-11-04T15:51:55.987 回答
9

如果两个矩形重叠,这是使用 C++ 检查的一种非常快速的方法:

return std::max(rectA.left, rectB.left) < std::min(rectA.right, rectB.right)
    && std::max(rectA.top, rectB.top) < std::min(rectA.bottom, rectB.bottom);

它的工作原理是计算相交矩形的左右边界,然后比较它们:如果右边界等于或小于左边界,则表示交点为空,因此矩形不重叠;否则,它会再次尝试使用顶部和底部边框。

与传统的 4 次比较替代方法相比,这种方法有什么优势?这是关于现代处理器的设计方式。他们有一种叫做分支预测的东西,当比较的结果总是相同的时候效果很好,但否则会有巨大的性能损失。但是,在没有分支指令的情况下,CPU 的性能相当不错。通过计算交叉点的边界而不是对每个轴进行两次单独的检查,我们节省了两个分支,每对一个。

如果第一次比较很可能是错误的,那么四种比较方法可能会优于这种方法。不过,这种情况非常少见,因为这意味着第二个矩形通常位于第一个矩形的左侧,而不是右侧或重叠。大多数情况下,您需要检查第一个矩形两侧的矩形,这通常会抵消分支预测的优势。

这种方法可以进一步改进,具体取决于矩形的预期分布:

  • 如果您希望选中的矩形主要位于彼此的左侧或右侧,则上述方法效果最佳。例如,当您使用矩形交集来检查游戏的碰撞时,可能就是这种情况,其中游戏对象主要水平分布(例如,类似于 SuperMarioBros 的游戏)。
  • 如果您希望检查的矩形主要位于彼此的顶部或底部,例如在冰塔类型的游戏中,那么先检查顶部/底部和最后检查左/右可能会更快:
return std::max(rectA.top, rectB.top) < std::min(rectA.bottom, rectB.bottom)
    && std::max(rectA.left, rectB.left) < std::min(rectA.right, rectB.right);
  • 但是,如果相交的概率接近于不相交的概率,最好有一个完全无分支的替代方案:
return std::max(rectA.left, rectB.left) < std::min(rectA.right, rectB.right)
     & std::max(rectA.top, rectB.top) < std::min(rectA.bottom, rectB.bottom);

(注意更改为&&single &

于 2020-07-11T17:56:52.977 回答
8

问自己一个相反的问题:我如何确定两个矩形是否根本不相交?显然,完全在矩形 B 左侧的矩形 A 不相交。此外,如果 A 完全在右侧。同样,如果 A 完全高于 B 或完全低于 B。在任何其他情况下,A 和 B 相交。

以下可能有错误,但我对算法非常有信心:

struct Rectangle { int x; int y; int width; int height; };

bool is_left_of(Rectangle const & a, Rectangle const & b) {
   if (a.x + a.width <= b.x) return true;
   return false;
}
bool is_right_of(Rectangle const & a, Rectangle const & b) {
   return is_left_of(b, a);
}

bool not_intersect( Rectangle const & a, Rectangle const & b) {
   if (is_left_of(a, b)) return true;
   if (is_right_of(a, b)) return true;
   // Do the same for top/bottom...
 }

bool intersect(Rectangle const & a, Rectangle const & b) {
  return !not_intersect(a, b);
}
于 2008-11-20T18:47:47.500 回答
8

假设您已经定义了矩形的位置和大小,如下所示:

在此处输入图像描述

我的 C++ 实现是这样的:

class Vector2D
{
    public:
        Vector2D(int x, int y) : x(x), y(y) {}
        ~Vector2D(){}
        int x, y;
};

bool DoRectanglesOverlap(   const Vector2D & Pos1,
                            const Vector2D & Size1,
                            const Vector2D & Pos2,
                            const Vector2D & Size2)
{
    if ((Pos1.x < Pos2.x + Size2.x) &&
        (Pos1.y < Pos2.y + Size2.y) &&
        (Pos2.x < Pos1.x + Size1.x) &&
        (Pos2.y < Pos1.y + Size1.y))
    {
        return true;
    }
    return false;
}

根据上图的示例函数调用:

DoRectanglesOverlap(Vector2D(3, 7),
                    Vector2D(8, 5),
                    Vector2D(6, 4),
                    Vector2D(9, 4));

块内的比较if如下所示:

if ((Pos1.x < Pos2.x + Size2.x) &&
    (Pos1.y < Pos2.y + Size2.y) &&
    (Pos2.x < Pos1.x + Size1.x) &&
    (Pos2.y < Pos1.y + Size1.y))
                 ↓  
if ((   3   <    6   +   9    ) &&
    (   7   <    4   +   4    ) &&
    (   6   <    3   +   8    ) &&
    (   4   <    7   +   5    ))
于 2014-12-23T16:38:06.017 回答
3

在问题中,您链接到矩形何时处于任意旋转角度的数学。但是,如果我了解问题中关于角度的一点,我会解释为所有矩形都相互垂直。

一般知道重叠面积公式是:

使用示例:

   1 2 3 4 5 6

1 +---+---+
   | |   
2 + A +---+---+
   | | 乙|
3 + + +---+---+
   | | | | |
4 +---+---+---+---+ +
               | |
5 + C +
               | |
6 +---+---+

1)将所有x坐标(左右)收集到一个列表中,然后对其进行排序并删除重复项

1 3 4 5 6

2)将所有y坐标(顶部和底部)收集到一个列表中,然后对其进行排序并删除重复项

1 2 3 4 6

3) 通过唯一 x 坐标之间的间隙数 * 唯一 y 坐标之间的间隙数创建一个 2D 数组。

4 * 4

4)将所有矩形绘制到这个网格中,增加它出现的每个单元格的计数:

   1 3 4 5 6

1 +---+
   | 1 | 0 0 0
2 +---+---+---+
   | 1 | 1 | 1 | 0
3 +---+---+---+---+
   | 1 | 1 | 2 | 1 |
4 +---+---+---+---+
     0 0 | 1 | 1 |
6 +---+---+

5)当你绘制矩形时,很容易拦截重叠。

于 2008-11-20T19:01:12.217 回答
3

下面是它在 Java API 中的实现方式:

public boolean intersects(Rectangle r) {
    int tw = this.width;
    int th = this.height;
    int rw = r.width;
    int rh = r.height;
    if (rw <= 0 || rh <= 0 || tw <= 0 || th <= 0) {
        return false;
    }
    int tx = this.x;
    int ty = this.y;
    int rx = r.x;
    int ry = r.y;
    rw += rx;
    rh += ry;
    tw += tx;
    th += ty;
    //      overflow || intersect
    return ((rw < rx || rw > tx) &&
            (rh < ry || rh > ty) &&
            (tw < tx || tw > rx) &&
            (th < ty || th > ry));
}
于 2011-10-24T06:31:52.420 回答
2
struct Rect
{
   Rect(int x1, int x2, int y1, int y2)
   : x1(x1), x2(x2), y1(y1), y2(y2)
   {
       assert(x1 < x2);
       assert(y1 < y2);
   }

   int x1, x2, y1, y2;
};

//some area of the r1 overlaps r2
bool overlap(const Rect &r1, const Rect &r2)
{
    return r1.x1 < r2.x2 && r2.x1 < r1.x2 &&
           r1.y1 < r2.y2 && r2.x1 < r1.y2;
}

//either the rectangles overlap or the edges touch
bool touch(const Rect &r1, const Rect &r2)
{
    return r1.x1 <= r2.x2 && r2.x1 <= r1.x2 &&
           r1.y1 <= r2.y2 && r2.x1 <= r1.y2;
}
于 2008-11-20T19:31:23.810 回答
1

不要将坐标视为指示像素所在的位置。把它们想象成像素之间。这样,2x2 矩形的面积应该是 4,而不是 9。

bool bOverlap = !((A.Left >= B.Right || B.Left >= A.Right)
               && (A.Bottom >= B.Top || B.Bottom >= A.Top));
于 2008-11-20T19:33:15.490 回答
1

如果矩形重叠,则重叠区域将大于零。现在让我们找到重叠区域:

如果它们重叠,则重叠矩形的左边缘将是 ,max(r1.x1, r2.x1)而右边缘将是min(r1.x2, r2.x2)。所以重叠的长度将是min(r1.x2, r2.x2) - max(r1.x1, r2.x1)

所以该区域将是:

area = (max(r1.x1, r2.x1) - min(r1.x2, r2.x2)) * (max(r1.y1, r2.y1) - min(r1.y2, r2.y2))

如果area = 0那么它们不重叠。

是不是很简单?

于 2010-04-23T07:25:26.143 回答
1

假设这两个矩形是矩形A和矩形B。让它们的中心是A1和B1(A1和B1的坐标很容易找到),让高度是Ha和Hb,宽度是Wa和Wb,让dx是A1 和 B1 之间的 width(x) 距离和 dy 是 A1 和 B1 之间的 height(y) 距离。

现在我们可以说我们可以说 A 和 B 重叠:当

if(!(dx > Wa+Wb)||!(dy > Ha+Hb)) returns true
于 2012-06-28T15:16:15.450 回答
1

最简单的方法是

/**
 * Check if two rectangles collide
 * x_1, y_1, width_1, and height_1 define the boundaries of the first rectangle
 * x_2, y_2, width_2, and height_2 define the boundaries of the second rectangle
 */
boolean rectangle_collision(float x_1, float y_1, float width_1, float height_1, float x_2, float y_2, float width_2, float height_2)
{
  return !(x_1 > x_2+width_2 || x_1+width_1 < x_2 || y_1 > y_2+height_2 || y_1+height_1 < y_2);
}

首先请记住,在计算机中,坐标系是颠倒的。x轴与数学相同,但y轴向下增加并向上减少..如果从中心绘制矩形。如果 x1 坐标大于 x2 加上它的一半宽度。那么这就意味着走了一半他们会互相接触。并以同样的方式向下 + 其高度的一半。会碰撞..

于 2014-05-26T11:26:08.923 回答
0

我已经实现了一个 C# 版本,它很容易转换为 C++。

public bool Intersects ( Rectangle rect )
{
  float ulx = Math.Max ( x, rect.x );
  float uly = Math.Max ( y, rect.y );
  float lrx = Math.Min ( x + width, rect.x + rect.width );
  float lry = Math.Min ( y + height, rect.y + rect.height );

  return ulx <= lrx && uly <= lry;
}
于 2008-11-20T18:46:04.650 回答
0

我有一个非常简单的解决方案

令 x1,y1 x2,y2 ,l1,b1,l2,分别为它们的坐标和长宽

考虑条件((x2

现在,这些矩形重叠的唯一方法是,如果与 x1,y1 对角线的点位于另一个矩形内,或者类似地,与 x2,y2 对角线的点将位于另一个矩形内。这正是上述条件所暗示的。

于 2013-05-12T07:17:40.553 回答
0

A和B是两个矩形。C 是它们的覆盖矩形。

four points of A be (xAleft,yAtop),(xAleft,yAbottom),(xAright,yAtop),(xAright,yAbottom)
four points of A be (xBleft,yBtop),(xBleft,yBbottom),(xBright,yBtop),(xBright,yBbottom)

A.width = abs(xAleft-xAright);
A.height = abs(yAleft-yAright);
B.width = abs(xBleft-xBright);
B.height = abs(yBleft-yBright);

C.width = max(xAleft,xAright,xBleft,xBright)-min(xAleft,xAright,xBleft,xBright);
C.height = max(yAtop,yAbottom,yBtop,yBbottom)-min(yAtop,yAbottom,yBtop,yBbottom);

A and B does not overlap if
(C.width >= A.width + B.width )
OR
(C.height >= A.height + B.height) 

它会处理所有可能的情况。

于 2014-01-16T17:30:19.997 回答
0

这是来自《Java 编程简介-综合版》一书的练习 3.28。代码测试两个矩形是否有齿,一个是否在另一个内部,一个是否在另一个外部。如果这些条件都不满足,则两者重叠。

**3.28(几何:两个矩形)编写一个程序,提示用户输入两个矩形的中心x、y坐标、宽度和高度,并确定第二个矩形是否在第一个内部或与第一个重叠,如图 3.9 所示。测试您的程序以涵盖所有情况。以下是示例运行:

输入 r1 的中心 x、y 坐标、宽度和高度:2.5 4 2.5 43 输入 r2 的中心 x、y 坐标、宽度和高度:1.5 5 0.5 3 r2 在 r1 内

输入 r1 的中心 x、y 坐标、宽度和高度:1 2 3 5.5 输入 r2 的中心 x、y 坐标、宽度和高度:3 4 4.5 5 r2 与 r1 重叠

输入 r1 的中心 x、y 坐标、宽度和高度:1 2 3 3 输入 r2 的中心 x、y 坐标、宽度和高度:40 45 3 2 r2 不与 r1 重叠

import java.util.Scanner;

public class ProgrammingEx3_28 {
public static void main(String[] args) {
    Scanner input = new Scanner(System.in);

    System.out
            .print("Enter r1's center x-, y-coordinates, width, and height:");
    double x1 = input.nextDouble();
    double y1 = input.nextDouble();
    double w1 = input.nextDouble();
    double h1 = input.nextDouble();
    w1 = w1 / 2;
    h1 = h1 / 2;
    System.out
            .print("Enter r2's center x-, y-coordinates, width, and height:");
    double x2 = input.nextDouble();
    double y2 = input.nextDouble();
    double w2 = input.nextDouble();
    double h2 = input.nextDouble();
    w2 = w2 / 2;
    h2 = h2 / 2;

    // Calculating range of r1 and r2
    double x1max = x1 + w1;
    double y1max = y1 + h1;
    double x1min = x1 - w1;
    double y1min = y1 - h1;
    double x2max = x2 + w2;
    double y2max = y2 + h2;
    double x2min = x2 - w2;
    double y2min = y2 - h2;

    if (x1max == x2max && x1min == x2min && y1max == y2max
            && y1min == y2min) {
        // Check if the two are identicle
        System.out.print("r1 and r2 are indentical");

    } else if (x1max <= x2max && x1min >= x2min && y1max <= y2max
            && y1min >= y2min) {
        // Check if r1 is in r2
        System.out.print("r1 is inside r2");
    } else if (x2max <= x1max && x2min >= x1min && y2max <= y1max
            && y2min >= y1min) {
        // Check if r2 is in r1
        System.out.print("r2 is inside r1");
    } else if (x1max < x2min || x1min > x2max || y1max < y2min
            || y2min > y1max) {
        // Check if the two overlap
        System.out.print("r2 does not overlaps r1");
    } else {
        System.out.print("r2 overlaps r1");
    }

}
}
于 2015-08-01T10:06:02.573 回答
0
bool Square::IsOverlappig(Square &other)
{
    bool result1 = other.x >= x && other.y >= y && other.x <= (x + width) && other.y <= (y + height); // other's top left falls within this area
    bool result2 = other.x >= x && other.y <= y && other.x <= (x + width) && (other.y + other.height) <= (y + height); // other's bottom left falls within this area
    bool result3 = other.x <= x && other.y >= y && (other.x + other.width) <= (x + width) && other.y <= (y + height); // other's top right falls within this area
    bool result4 = other.x <= x && other.y <= y && (other.x + other.width) >= x && (other.y + other.height) >= y; // other's bottom right falls within this area
    return result1 | result2 | result3 | result4;
}
于 2016-08-07T03:29:22.090 回答
0

对于那些在矩形数据中使用中心点和一半大小的人,而不是典型的 x、y、w、h 或 x0、y0、x1、x1,您可以这样做:

#include <cmath> // for fabsf(float)

struct Rectangle
{
    float centerX, centerY, halfWidth, halfHeight;
};

bool isRectangleOverlapping(const Rectangle &a, const Rectangle &b)
{
    return (fabsf(a.centerX - b.centerX) <= (a.halfWidth + b.halfWidth)) &&
           (fabsf(a.centerY - b.centerY) <= (a.halfHeight + b.halfHeight)); 
}
于 2017-08-13T18:27:11.617 回答
0
struct point { int x, y; };

struct rect { point tl, br; }; // top left and bottom right points

// return true if rectangles overlap
bool overlap(const rect &a, const rect &b)
{
    return a.tl.x <= b.br.x && a.br.x >= b.tl.x && 
           a.tl.y >= b.br.y && a.br.y <= b.tl.y;
}
于 2020-03-01T17:00:48.280 回答