下面的代码在 Windows 和 Ubuntu 平台上产生不同的结果。我理解这是因为处理并行处理的方法不同。
总结:
我不能在 Linux 上并行insert
/数据( , ),而我可以在 Windows 上做到这一点。 rbind
mclapply
mcmapply
感谢@Hong Ooi 指出
mclapply
不能在 Windows 上并行工作,但下面的问题仍然有效。
当然,same 没有多个插入data.frame
,每个插入都在单独的 data.frame 中执行。
library(R6)
library(parallel)
# storage objects generator
cl <- R6Class(
classname = "cl",
public = list(
data = data.frame(NULL),
initialize = function() invisible(self),
insert = function(x) self$data <- rbind(self$data, x)
)
)
N <- 4L # number of entities
i <- setNames(seq_len(N),paste0("n",seq_len(N)))
# random data.frames
set.seed(1)
ldt <- lapply(i, function(i) data.frame(replicate(sample(3:10,1),sample(letters,1e5,rep=TRUE))))
# entity storage
lcl1 <- lapply(i, function(i) cl$new())
lcl2 <- lapply(i, function(i) cl$new())
lcl3 <- lapply(i, function(i) cl$new())
# insert data
invisible({
mclapply(names(i), FUN = function(n) lcl1[[n]]$insert(ldt[[n]]))
mcmapply(FUN = function(dt, cl) cl$insert(dt), ldt, lcl2, SIMPLIFY=FALSE)
lapply(names(i), FUN = function(n) lcl3[[n]]$insert(ldt[[n]]))
})
### Windows
sapply(lcl1, function(cl) nrow(cl$data)) # mclapply
# n1 n2 n3 n4
# 100000 100000 100000 100000
sapply(lcl2, function(cl) nrow(cl$data)) # mcmapply
# n1 n2 n3 n4
# 100000 100000 100000 100000
sapply(lcl3, function(cl) nrow(cl$data)) # lapply
# n1 n2 n3 n4
# 100000 100000 100000 100000
### Unix
sapply(lcl1, function(cl) nrow(cl$data)) # mclapply
#n1 n2 n3 n4
# 0 0 0 0
sapply(lcl2, function(cl) nrow(cl$data)) # mcmapply
#n1 n2 n3 n4
# 0 0 0 0
sapply(lcl3, function(cl) nrow(cl$data)) # lapply
# n1 n2 n3 n4
# 100000 100000 100000 100000
问题是:
如何在 Linux 平台上实现rbind
并行成单独的 s?data.frame
在我的情况下, PS 非内存存储SQLite
不能被视为解决方案。