@thelatemail 基本上已经给了你完整的答案。因此,进一步研究他的方法,您可以通过以下方式扩展它(我正在使用dplyr
库)。
首先创建一个行ID:
library(dplyr)
data <- data %>% mutate(rowid = row_number())
...并将距离数据转换为数据框:
dist_data <- as.data.frame(t(apply(out, 1, function(x) colnames(out)[order(x)[2:4]])))
dist_data <- dist_data %>% mutate(rowid = row_number())
然后你可以简单地加入rowid
data <- data %>% left_join(dist_data, by="rowid")
要添加玩家的姓名,您只需创建某种玩家索引数据框并使用相同的想法进行更多连接:
data$V1 <- as.numeric(data$V1)
data$V2 <- as.numeric(data$V2)
data$V3 <- as.numeric(data$V3)
# now we have to remap the V1, V2, V3 to the player_name and id's..
# we can do this by create a name dataset with the indexes...
name_index <- dplyr::select(data, player_name, rowid)
data %>%
left_join(rename(name_index, closest_name1=player_name, V1=rowid)) %>%
left_join(rename(name_index, closest_name2=player_name, V2=rowid)) %>%
left_join(rename(name_index, closest_name3=player_name, V3=rowid)) %>%
dplyr::select(-V1, -V2, -V3)
输出:
player_name gp points rowid closest_name1 closest_name2 closest_name3
1 Player 1 82 95 1 Player 3 Player 2 Player 2
2 Player 2 80 88 2 Player 3 Player 3 Player 1
3 Player 3 81 84 3 Player 1 Player 4 Player 4
4 Player 4 82 90 4 Player 1 Player 1 Player 2
5 Player 5 82 77 5 Player 2 Player 2 Player 3