10

Net 4.6 RC x64 的速度是 x86(发布版)的两倍:

考虑这段代码:

class SpectralNorm
{
    public static void Main(String[] args)
    {
        int n = 5500;
        if (args.Length > 0) n = Int32.Parse(args[0]);

        var spec = new SpectralNorm();
        var watch = Stopwatch.StartNew();
        var res = spec.Approximate(n);

        Console.WriteLine("{0:f9} -- {1}", res, watch.Elapsed.TotalMilliseconds);
    }

    double Approximate(int n)
    {
        // create unit vector
        double[] u = new double[n];
        for (int i = 0; i < n; i++) u[i] = 1;

        // 20 steps of the power method
        double[] v = new double[n];
        for (int i = 0; i < n; i++) v[i] = 0;

        for (int i = 0; i < 10; i++)
        {
            MultiplyAtAv(n, u, v);
            MultiplyAtAv(n, v, u);
        }

        // B=AtA         A multiplied by A transposed
        // v.Bv /(v.v)   eigenvalue of v 
        double vBv = 0, vv = 0;
        for (int i = 0; i < n; i++)
        {
            vBv += u[i] * v[i];
            vv += v[i] * v[i];
        }

        return Math.Sqrt(vBv / vv);
    }


    /* return element i,j of infinite matrix A */
    double A(int i, int j)
    {
        return 1.0 / ((i + j) * (i + j + 1) / 2 + i + 1);
    }

    /* multiply vector v by matrix A */
    void MultiplyAv(int n, double[] v, double[] Av)
    {
        for (int i = 0; i < n; i++)
        {
            Av[i] = 0;
            for (int j = 0; j < n; j++) Av[i] += A(i, j) * v[j];
        }
    }

    /* multiply vector v by matrix A transposed */
    void MultiplyAtv(int n, double[] v, double[] Atv)
    {
        for (int i = 0; i < n; i++)
        {
            Atv[i] = 0;
            for (int j = 0; j < n; j++) Atv[i] += A(j, i) * v[j];
        }
    }

    /* multiply vector v by matrix A and then by matrix A transposed */
    void MultiplyAtAv(int n, double[] v, double[] AtAv)
    {
        double[] u = new double[n];
        MultiplyAv(n, v, u);
        MultiplyAtv(n, u, AtAv);
    }
}

在我的机器上,x86 发布版本需要 4.5 秒才能完成,而 x64 需要 9.5 秒。x64 是否需要任何特定的标志/设置?

更新

事实证明,RyuJIT 在这个问题上起了作用。如果useLegacyJit在 app.config 中启用,结果会有所不同,这一次 x64 更快。

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <startup>
    <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.6"/>
  </startup>
  <runtime>
    <useLegacyJit enabled="1" />
 </runtime>
</configuration>

更新

现在该问题已报告给 CLR 团队coreclr,issue 993

4

1 回答 1

4

perf 回归的原因在GitHub 上有回答;简而言之,它似乎只在 Intel 而不是在 Amd64 机器上重现。内循环操作

Av[i] += v[j] * A(i, j);

结果是

IN002a: 000093 lea      eax, [rax+r10+1]
IN002b: 000098 cvtsi2sd xmm1, rax
IN002c: 00009C movsd    xmm2, qword ptr [@RWD00]
IN002d: 0000A4 divsd    xmm2, xmm1
IN002e: 0000A8 movsxd   eax, edi
IN002f: 0000AB movaps   xmm1, xmm2
IN0030: 0000AE mulsd    xmm1, qword ptr [r8+8*rax+16]
IN0031: 0000B5 addsd    xmm0, xmm1
IN0032: 0000B9 movsd    qword ptr [rbx], xmm0

Cvtsi2sd 对未修改的 xmm 寄存器的高字节进行低 8 字节的部分写入。对于 repro 案例,xmm1 是部分编写的,但在代码中还有 xmm1 的进一步用途。这会在 cvtsi2sd 和其他使用 xmm1 的指令之间产生错误的依赖性,从而影响指令并行性。实际上,在 cvtsi2sd 修复性能回归之前,将 Int 的 codegen 修改为 Float cast 以发出“xorps xmm1,xmm1”。

解决方法:如果我们在 MultiplyAv/MultiplyAvt 方法中反转乘法运算中的操作数顺序,也可以避免性能回归

void MultiplyAv(int n, double[] v, double[] Av)
{
    for (int i = 0; i < n; i++)
    {
        Av[i] = 0;
        for (int j = 0; j < n; j++)  
              Av[i] += v[j] * A(i, j);  //  order of operands reversed
    }
}
于 2015-05-15T19:59:48.797 回答