当我们有一个数据类型为字符串且值如 col1 col2 1 .89 的列时,我们将面临错误
所以,当我们使用
def azureml_main(dataframe1 = None, dataframe2 = None):
# Execution logic goes here
print('Input pandas.DataFrame #1:')
import pandas as pd
import numpy as np
from sklearn.kernel_approximation import RBFSampler
x =dataframe1.iloc[:,2:1080]
print x
df1 = dataframe1[['colname']]
change = np.array(df1)
b = change.ravel()
print b
rbf_feature = RBFSampler(gamma=1, n_components=100,random_state=1)
print rbf_feature
print "test"
X_features = rbf_feature.fit_transform(x)
在此之后我们收到错误,因为无法将非 int 转换为浮点类型