1

我已经在 Hadoop 上实现了二级排序,但我并不真正了解框架的行为。

我创建了一个复合键,其中包含原始键和部分值,用于排序。

为了实现这一点,我实现了自己的分区器

public class CustomPartitioner extends Partitioner<CoupleAsKey, LongWritable>{

@Override
public int getPartition(CoupleAsKey couple, LongWritable value, int numPartitions) {

    return Long.hashCode(couple.getKey1()) % numPartitions;
}

我自己的组比较器

public class GroupComparator extends WritableComparator {

protected GroupComparator()
{
    super(CoupleAsKey.class, true);
}

@Override
public int compare(WritableComparable w1, WritableComparable w2) {

    CoupleAsKey c1 = (CoupleAsKey)w1;
    CoupleAsKey c2 = (CoupleAsKey)w2;

    return Long.compare(c1.getKey1(), c2.getKey1());
}

}

并通过以下方式定义这对夫妇

public class CoupleAsKey implements WritableComparable<CoupleAsKey>{

private long key1;
private long key2;

public CoupleAsKey() {
}

public CoupleAsKey(long key1, long key2) {
    this.key1 = key1;
    this.key2 = key2;
}

public long getKey1() {
    return key1;
}

public void setKey1(long key1) {
    this.key1 = key1;
}

public long getKey2() {
    return key2;
}

public void setKey2(long key2) {
    this.key2 = key2;
}

@Override
public void write(DataOutput output) throws IOException {

    output.writeLong(key1);
    output.writeLong(key2);

}

@Override
public void readFields(DataInput input) throws IOException {

    key1 = input.readLong();
    key2 = input.readLong();
}

@Override
public int compareTo(CoupleAsKey o2) {

    int cmp = Long.compare(key1, o2.getKey1());

    if(cmp != 0)
        return cmp;

    return Long.compare(key2, o2.getKey2());
}

@Override
public String toString() {
    return key1 + ","  + key2 + ",";
}

}

这是司机

Configuration conf = new Configuration();
    Job job = new Job(conf);

    job.setJarByClass(SSDriver.class);

    job.setMapperClass(SSMapper.class);
    job.setReducerClass(SSReducer.class);

    job.setMapOutputKeyClass(CoupleAsKey.class);
    job.setMapOutputValueClass(LongWritable.class);
    job.setPartitionerClass(CustomPartitioner.class);
    job.setGroupingComparatorClass(GroupComparator.class);

    FileInputFormat.addInputPath(job, new Path("/home/marko/WORK/Whirlpool/input.csv"));
    FileOutputFormat.setOutputPath(job, new Path("/home/marko/WORK/Whirlpool/output"));

    job.waitForCompletion(true);

现在,这可行,但真正奇怪的是,当在 reducer 中迭代一个键时,键的第二部分(值部分)在每次迭代中都会发生变化。为什么以及如何?

 @Override
protected void reduce(CoupleAsKey key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {

    for (LongWritable value : values) {

        //key.key2 changes during iterations, why?
        context.write(key, value);
    }

}
4

1 回答 1

0

定义说:“如果您希望将数据分区中的所有相关行发送到单个减速器,则必须实现分组比较器”。这仅确保将这些键集发送到单个reduce 调用,而不是确保键将从复合(或其他)更改为仅包含已完成分组的键部分的内容。

但是,当您迭代值时,相应的键也会发生变化。我们通常不会观察到这种情况发生,因为默认情况下,这些值被分组在同一个(非复合)键上,因此,即使值发生变化,(值 of-)键也保持不变。

您可以尝试打印键的对象引用,您会注意到每次迭代时,键的对象引用也在变化(如下所示:)

IntWritable@1235ft
IntWritable@6635gh
IntWritable@9804as

或者,您也可以尝试通过以下方式在 IntWritable 上应用组比较器(您必须编写自己的逻辑才能这样做):

Group1:    
1        a    
1        b    
2        c

Group2:
3        c
3        d
4        a

你会看到,随着价值的每一次迭代,你的密钥也在改变。

于 2016-08-02T07:05:46.733 回答