我已经在 Hadoop 上实现了二级排序,但我并不真正了解框架的行为。
我创建了一个复合键,其中包含原始键和部分值,用于排序。
为了实现这一点,我实现了自己的分区器
public class CustomPartitioner extends Partitioner<CoupleAsKey, LongWritable>{
@Override
public int getPartition(CoupleAsKey couple, LongWritable value, int numPartitions) {
return Long.hashCode(couple.getKey1()) % numPartitions;
}
我自己的组比较器
public class GroupComparator extends WritableComparator {
protected GroupComparator()
{
super(CoupleAsKey.class, true);
}
@Override
public int compare(WritableComparable w1, WritableComparable w2) {
CoupleAsKey c1 = (CoupleAsKey)w1;
CoupleAsKey c2 = (CoupleAsKey)w2;
return Long.compare(c1.getKey1(), c2.getKey1());
}
}
并通过以下方式定义这对夫妇
public class CoupleAsKey implements WritableComparable<CoupleAsKey>{
private long key1;
private long key2;
public CoupleAsKey() {
}
public CoupleAsKey(long key1, long key2) {
this.key1 = key1;
this.key2 = key2;
}
public long getKey1() {
return key1;
}
public void setKey1(long key1) {
this.key1 = key1;
}
public long getKey2() {
return key2;
}
public void setKey2(long key2) {
this.key2 = key2;
}
@Override
public void write(DataOutput output) throws IOException {
output.writeLong(key1);
output.writeLong(key2);
}
@Override
public void readFields(DataInput input) throws IOException {
key1 = input.readLong();
key2 = input.readLong();
}
@Override
public int compareTo(CoupleAsKey o2) {
int cmp = Long.compare(key1, o2.getKey1());
if(cmp != 0)
return cmp;
return Long.compare(key2, o2.getKey2());
}
@Override
public String toString() {
return key1 + "," + key2 + ",";
}
}
这是司机
Configuration conf = new Configuration();
Job job = new Job(conf);
job.setJarByClass(SSDriver.class);
job.setMapperClass(SSMapper.class);
job.setReducerClass(SSReducer.class);
job.setMapOutputKeyClass(CoupleAsKey.class);
job.setMapOutputValueClass(LongWritable.class);
job.setPartitionerClass(CustomPartitioner.class);
job.setGroupingComparatorClass(GroupComparator.class);
FileInputFormat.addInputPath(job, new Path("/home/marko/WORK/Whirlpool/input.csv"));
FileOutputFormat.setOutputPath(job, new Path("/home/marko/WORK/Whirlpool/output"));
job.waitForCompletion(true);
现在,这可行,但真正奇怪的是,当在 reducer 中迭代一个键时,键的第二部分(值部分)在每次迭代中都会发生变化。为什么以及如何?
@Override
protected void reduce(CoupleAsKey key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
for (LongWritable value : values) {
//key.key2 changes during iterations, why?
context.write(key, value);
}
}