0

我正在使用OpenCL. 人脸检测算法基于 Viola Jones 算法。我试图制作 Cascade 分类步骤内核代码。我在级联阶段中设置classifier data了级联阶段 1,local memory(__local)因为分类器数据用于所有工作项。

但是,不使用本地内存(使用全局内存)的内核分析时间比使用本地内存更快。

编辑:

我上传了完整的代码。


带本地内存版本

__kernel void CASCADE(__read_only image2d_t input_image, __write_only image2d_t output_image,__constant float* classifierMem,__constant int* idxNumValStageArray, int numTotStage, __constant int* vecSkin){
       int cascadeLocalSize = get_local_size(0);

       __local float localS1F1[42];

       int localIdx = get_local_id(1)*cascadeLocalSize + get_local_id(0);
       if(localIdx<42)
       {
           int stage1Idx = localIdx + idxNumValStageArray[0]+4;
           localS1F1[localIdx] = classifierMem[stage1Idx];
       }
       barrier(CLK_LOCAL_MEM_FENCE);


       float resizeFactor = 1.0;
       int2 im_dim = get_image_dim(input_image);
       unsigned int srcWidth = im_dim.x*(float)resizeFactor;
       unsigned int srcHeight = im_dim.y*(float)resizeFactor;

       int gx = get_global_id(0);
       int gy = get_global_id(1);

       int skinX=0;
       int skinY=0;
       int coordi=vecSkin[512*gy+gx];
       skinX = coordi%im_dim.x;
       skinY = coordi/im_dim.x;

       if( skinX >= 10 && skinY >= 10 )
       {
             skinX -= 10;
             skinY -= 10;
       }      

       int type = gx%3;

       unsigned int windowWidth = classifierMem[0];
       unsigned int windowHeight = classifierMem[1]; 


       unsigned int stageIndex;
       float stageThres;
       float numFeatures;
       unsigned int featureIndex;
       float featureValue;

       if(skinX<srcWidth-windowWidth-1 && skinY<srcHeight-windowHeight-1){
             bool stagePass = true;
             unsigned int index = 0;
             for(unsigned int i=numTotStage; i>0;i--){
                    if(stagePass){
                           if(index == 0){
                                 stageIndex = idxNumValStageArray[0];                                 
                                 stageThres = classifierMem[stageIndex+2];
                                 numFeatures = classifierMem[stageIndex+3];
                                 featureIndex = 0;
                                 featureValue = 0.0;                           
                           }
                           else{
                                 stageIndex = idxNumValStageArray[index];
                                 stageThres = classifierMem[stageIndex+2];
                                 numFeatures = classifierMem[stageIndex+3];
                                 featureIndex = stageIndex+4;
                                 featureValue = 0.0;
                           }
                           float featureThres;
                           float succVal;
                           float failVal;
                           unsigned int numRegions;
                           float regionValue;


                           if(type ==0 && index==0)
                           {
                                 for(unsigned int j=numFeatures; j>0;j--){
                                        if(stagePass){
                                               featureThres=localS1F1[featureIndex++]*(windowWidth*windowHeight);
                                              succVal=localS1F1[featureIndex++];
                                              failVal=localS1F1[featureIndex++];
                                              numRegions = localS1F1[featureIndex++];
                                              regionValue =0.0;

                                              float4 rectValue;
                                              int4 regionP;                                  
                                              for(unsigned int k=numRegions; k>0;k--){

                                                     regionP.x=(int)(localS1F1[featureIndex])+skinX;
                                                     regionP.y=(int)(localS1F1[featureIndex+1])+skinY;
                                                     regionP.z=(int)(localS1F1[featureIndex+2])+regionP.x;
                                                     regionP.w=(int)(localS1F1[featureIndex+3])+regionP.y;

                                                     rectValue.x = read_imagef(input_image, sampler, regionP.xy).x;
                                                     rectValue.y = read_imagef(input_image, sampler, regionP.zy).x;
                                                     rectValue.z = read_imagef(input_image, sampler, regionP.xw).x;
                                                     rectValue.w = read_imagef(input_image, sampler, regionP.zw).x;

                                                     regionValue += dot(rectValue, (float4)(1.0f, -1.0f, -1.0f, 1.0f))*localS1F1[featureIndex+4];

                                                     featureIndex+=5;
                                              }
                                              featureValue += (regionValue < featureThres)?failVal:succVal;                              
                                              if(j*2 == (unsigned int)numFeatures && featureValue*2 < stageThres) stagePass =false;

                                        }// end of if(stagePass) 
                                 }// end of for(unsigned int j=numFeatures; j>0;j--)

                                  index++;
                                 if(featureValue < stageThres)    stagePass =false;
                                 else if(index==numTotStage) write_imagef(output_image, (int2)(skinX, skinY), (0.1));

                           }

                           else if(type ==1 && index ==0)
                           {
                                 featureIndex +=14;
                                 for(unsigned int j=numFeatures; j>0;j--){
                                        if(stagePass){
                                              if(j==1)
                                                     featureIndex -= 42;

                                               featureThres=localS1F1[featureIndex++]*(windowWidth*windowHeight);
                                              succVal=localS1F1[featureIndex++];
                                              failVal=localS1F1[featureIndex++];
                                              numRegions = localS1F1[featureIndex++];
                                              regionValue =0.0;


                                              float4 rectValue;
                                              int4 regionP;                                  
                                              for(unsigned int k=numRegions; k>0;k--){

                                                     regionP.x=(int)(localS1F1[featureIndex])+skinX;
                                                     regionP.y=(int)(localS1F1[featureIndex+1])+skinY;
                                                     regionP.z=(int)(localS1F1[featureIndex+2])+regionP.x;
                                                     regionP.w=(int)(localS1F1[featureIndex+3])+regionP.y;

                                                     rectValue.x = read_imagef(input_image, sampler, regionP.xy).x;
                                                     rectValue.y = read_imagef(input_image, sampler, regionP.zy).x;
                                                     rectValue.z = read_imagef(input_image, sampler, regionP.xw).x;
                                                     rectValue.w = read_imagef(input_image, sampler, regionP.zw).x;

                                                     regionValue += dot(rectValue, (float4)(1.0f, -1.0f, -1.0f, 1.0f))*localS1F1[featureIndex+4];

                                                     featureIndex+=5;
                                              }
                                              featureValue += (regionValue < featureThres)?failVal:succVal;                              
                                              if(j*2 == (unsigned int)numFeatures && featureValue*2 < stageThres) stagePass =false;
                                        }
                                 }

                                  index++;
                                 if(featureValue < stageThres)    stagePass =false;
                                 else if(index==numTotStage) write_imagef(output_image, (int2)(skinX, skinY), (0.1));
                           }

                           else if(index == 0)
                           {
                                 featureIndex +=28;
                                 for(unsigned int j=numFeatures; j>0;j--){
                                        if(stagePass){

                                              if(j==2)     featureIndex -= 42;

                                               featureThres=localS1F1[featureIndex++]*(windowWidth*windowHeight);
                                              succVal=localS1F1[featureIndex++];
                                              failVal=localS1F1[featureIndex++];
                                              numRegions = localS1F1[featureIndex++];
                                              regionValue =0.0;

                                              float4 rectValue;
                                              int4 regionP;                                  
                                              for(unsigned int k=numRegions; k>0;k--){

                                                     regionP.x=(int)(localS1F1[featureIndex])+skinX;
                                                     regionP.y=(int)(localS1F1[featureIndex+1])+skinY;
                                                     regionP.z=(int)(localS1F1[featureIndex+2])+regionP.x;
                                                     regionP.w=(int)(localS1F1[featureIndex+3])+regionP.y;

                                                     rectValue.x = read_imagef(input_image, sampler, regionP.xy).x;
                                                     rectValue.y = read_imagef(input_image, sampler, regionP.zy).x;
                                                     rectValue.z = read_imagef(input_image, sampler, regionP.xw).x;
                                                     rectValue.w = read_imagef(input_image, sampler, regionP.zw).x;

                                                     regionValue += dot(rectValue, (float4)(1.0f, -1.0f, -1.0f, 1.0f))*localS1F1[featureIndex+4];

                                                     featureIndex+=5;
                                              }// end of for(unsigned int k=numRegions; k>0;k--)
                                              featureValue += (regionValue < featureThres)?failVal:succVal;                              
                                              if(j*2 == (unsigned int)numFeatures && featureValue*2 < stageThres) stagePass =false;

                                        }// end of if(stagePass)
                                 }//end of for(unsigned int j=numFeatures; j>0;j--)

                                 index++;
                                 if(featureValue < stageThres)    stagePass =false;
                                 else if(index==numTotStage) write_imagef(output_image, (int2)(skinX, skinY), (0.1));
                           }

                           //stage 
                           else{
                                 for(unsigned int j=numFeatures; j>0;j--){
                                        if(stagePass){
                                               featureThres=classifierMem[featureIndex++]*(windowWidth*windowHeight);
                                              succVal=classifierMem[featureIndex++];
                                              failVal=classifierMem[featureIndex++];
                                              numRegions = classifierMem[featureIndex++];
                                              regionValue =0.0;
                                              float4 rectValue;
                                              int4 regionP;                                  
                                              for(unsigned int k=numRegions; k>0;k--){
                                                     regionP.x=(int)(classifierMem[featureIndex])+skinX;
                                                     regionP.y=(int)(classifierMem[featureIndex+1])+skinY;
                                                     regionP.z=(int)(classifierMem[featureIndex+2])+regionP.x;
                                                     regionP.w=(int)(classifierMem[featureIndex+3])+regionP.y;
                                                     rectValue.x = read_imagef(input_image, sampler, regionP.xy).x;
                                                     rectValue.y = read_imagef(input_image, sampler, regionP.zy).x;
                                                     rectValue.z = read_imagef(input_image, sampler, regionP.xw).x;
                                                     rectValue.w = read_imagef(input_image, sampler, regionP.zw).x;
                                                     regionValue += dot(rectValue, (float4)(1.0f, -1.0f, -1.0f, 1.0f))*classifierMem[featureIndex+4]; 
                                                     featureIndex+=5;
                                              }
                                              featureValue += (regionValue < featureThres)?failVal:succVal;                              
                                              if(j*2 == (unsigned int)numFeatures && featureValue*2 < stageThres) stagePass =false;
                                        }
                                 }
                                 index++;
                                 if(featureValue < stageThres)    stagePass =false;
                                 else if(index==numTotStage) write_imagef(output_image, (int2)(skinX, skinY), (0.1));
                           }
                    }
             }      
       }else return;
}

原始版本(没有本地内存)

__kernel void CASCADE(__read_only image2d_t input_image, __write_only image2d_t output_image,__constant float* classifierMem,__constant int* idxNumValStageArray, int numTotStage, __constant int* vecSkin){
    float resizeFactor = 1.0;

    int2 im_dim = get_image_dim(input_image);

    unsigned int srcWidth = im_dim.x*(float)resizeFactor;
    unsigned int srcHeight = im_dim.y*(float)resizeFactor;

    int gx = get_global_id(0);
    int gy = get_global_id(1);


    int skinX=0;
    int skinY=0;
    int coordi=vecSkin[512*gy+gx];
    skinX = coordi%im_dim.x;
    skinY = coordi/im_dim.x;

        if( skinX >= 10 && skinY >= 10 )
    {
        skinX -= 10;
        skinY -= 10;
    }   

    unsigned int windowWidth = classifierMem[0];
    unsigned int windowHeight = classifierMem[1];   

    if(gx<srcWidth-windowWidth-1 && gy<srcHeight-windowHeight-1){
        bool stagePass = true;
        unsigned int index = 0;
        for(unsigned int i=numTotStage; i>0;i--){
            if(stagePass){
                unsigned int stageIndex = idxNumValStageArray[index++];
                float stageThres = classifierMem[stageIndex+2];
                float numFeatures = classifierMem[stageIndex+3];
                unsigned int featureIndex = stageIndex+4;
                float featureValue = 0.0;               

                for(unsigned int j=numFeatures; j>0;j--){
                    if(stagePass){
                        float featureThres=classifierMem[featureIndex++]*(windowWidth*windowHeight);
                        float succVal=classifierMem[featureIndex++];
                        float failVal=classifierMem[featureIndex++];
                        unsigned int numRegions = classifierMem[featureIndex++];
                        float regionValue =0.0;

                        for(unsigned int k=numRegions; k>0;k--){                    
                            float4 rectValue;
                            int4 regionP;

                            regionP.x=(int)(classifierMem[featureIndex])+skinX;
                            regionP.y=(int)(classifierMem[featureIndex+1])+skinY;
                            regionP.z=(int)(classifierMem[featureIndex+2])+regionP.x;
                            regionP.w=(int)(classifierMem[featureIndex+3])+regionP.y;

                            rectValue.x = read_imagef(input_image, sampler, regionP.xy).x;
                            rectValue.y = read_imagef(input_image, sampler, regionP.zy).x;
                            rectValue.z = read_imagef(input_image, sampler, regionP.xw).x;
                            rectValue.w = read_imagef(input_image, sampler, regionP.zw).x;

                            regionValue += dot(rectValue, (float4)(1.0f, -1.0f, -1.0f, 1.0f))*classifierMem[featureIndex+4];

                            featureIndex+=5;
                        }

                        featureValue += (regionValue < featureThres)?failVal:succVal;                   

                        if(j*2 == (unsigned int)numFeatures && featureValue*2 < stageThres) stagePass =false;
                    }
                }
                if(featureValue < stageThres)   stagePass =false;
                else if(index==numTotStage) write_imagef(output_image, (int2)(skinX, skinY), (0.1));
            }
        }   
    }else return;
}

分析时间:原始版本(不带本地内存):24ms 修改版本(带本地内存):28ms

编辑:实际上 localWorkSize NULL 因为 globalWorkSize 总是因放置 NDRangeKernel 的向量大小而异。当放置特定的localWorkSize时,人脸检测率下降......所以我尝试将localWorkSize NUll,然后人脸检测率很好。所以我想知道原因。

这是主机代码:

    //localWorkSize[0] = 16;
    //localWorkSize[1] = 12; 
    numThreadsX=512;
    globalWorkSize[0] = numThreadsX;
    globalWorkSize[1] =  vecCoordinate.size()% numThreadsX == 0 ? vecCoordinate.size()/ numThreadsX :(vecCoordinate.size()/ numThreadsX) + 1;
    errNum = clEnqueueWriteBuffer(commandQueue,classifierMem,CL_TRUE,0,sizeof(float)*cntValArray,stageValArray,0,NULL,NULL); 
    errNum |= clEnqueueWriteBuffer(commandQueue,idxStageMem,CL_TRUE,0,sizeof(int)*haar.numStages,idxNumValStageArray,0,NULL,NULL); 
    errNum |= clSetKernelArg(kHaar_Cascade, 0, sizeof(memObjBuffer_Haar22), &memObjBuffer_Haar22);
    errNum |= clSetKernelArg(kHaar_Cascade, 1, sizeof(memObjBuffer22), &memObjBuffer22);
    errNum |= clSetKernelArg(kHaar_Cascade, 2, sizeof(cl_mem), &classifierMem);
    errNum |= clSetKernelArg(kHaar_Cascade, 3, sizeof(cl_mem), &idxStageMem);
    errNum |= clSetKernelArg(kHaar_Cascade, 4, sizeof(cl_int), &haar.numStages);
    errNum |= clSetKernelArg(kHaar_Cascade, 5, sizeof(cl_mem), &memVecCoordi);

    errNum = clEnqueueNDRangeKernel(commandQueue, kHaar_Cascade, 2, NULL,globalWorkSize, NULL,0, NULL, &event[3]);
4

2 回答 2

0

每个工作项都在读取五个浮点值(20 个字节)。大多数现代 GPU 将具有硬件管理的缓存,这些缓存位于内存层次结构中与用户管理的本地内存相似的级别。在您的不使用本地内存的版本中,这 20 个字节将很高兴地位于靠近 ALU 的缓存中,并提供您希望的所有数据重用性能优势。您使用本地内存的版本只是明确地做同样的事情,但也增加了一堆额外的开销来手动启动副本和工作项之间的一些额外同步,这势必会减慢速度。

如果仔细应用,本地内存可以在某些情况下提供性能优势。然而,在许多情况下,硬件缓存会做得更好,并为您留下更简单的代码。

于 2015-05-02T11:23:29.603 回答
0

有多种原因:

  • 内存负载的线程发散
  • 障碍不是免费的
  • 更多说明
  • 在大多数平台上,常量内存与共享内存几乎相同,因此额外的工作没有任何好处。
  • 我们不知道共享内存版本节省了多少读取 - 请告诉我们工作组的大小。它越小,我们节省的非本地内存读取越少。如果这是恒定的记忆,这并不重要。

对它们进行分析,看看分析器的输出是否显示了任何东西的最大利用率,并向我们指出那是什么。

另外,我不相信您的 l​​ocalIdx 和 stage1Idx 有意义,它们可能超出数组范围并导致奇怪的行为。至少对于给定的 gx/gy,您看起来使用的是来自 classifierMem 的不同索引。

于 2015-05-03T07:03:40.067 回答