0

我正在尝试打印 weka j48 算法的混淆矩阵,并且我得到了多个矩阵作为输出。

这是运行整个程序的类。它负责从用户那里获取输入,设置映射器和归约器,组织 weka 输入等。

public class WekDoop {



     * The main method of this program. 
     * Precondition: arff file is uploaded into HDFS and the correct
     * number of parameters were passed into the JAR file when it was run
     * 
     * @param args
     * @throws Exception
     */
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();

        // Make sure we have the correct number of arguments passed into the program
        if (args.length != 4) {
          System.err.println("Usage: WekDoop <# of splits> <classifier> <input file> <output file>");
          System.exit(1);
        }

        // configure the job using the command line args
        conf.setInt("Run-num.splits", Integer.parseInt(args[0]));
        conf.setStrings("Run.classify", args[1]);
        conf.set("io.serializations", "org.apache.hadoop.io.serializer.JavaSerialization," + "org.apache.hadoop.io.serializer.WritableSerialization");

        // Configure the jobs main class, mapper and reducer
        // TODO: Make the Job name print the name of the currently running classifier
        Job job = new Job(conf, "WekDoop");
        job.setJarByClass(WekDoop.class);
        job.setMapperClass(WekaMap.class);
        job.setReducerClass(WekaReducer.class);

        // Start with 1
        job.setNumReduceTasks(1);

        // This section sets the values of the <K2, V2>
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(weka.classifiers.bayes.NaiveBayes.class);
        job.setOutputValueClass(AggregateableEvaluation.class);

        // Set the input and output directories based on command line args
        FileInputFormat.addInputPath(job, new Path(args[2]));
        FileOutputFormat.setOutputPath(job, new Path(args[3]));

        // Set the input type of the environment
        // (In this case we are overriding TextInputFormat)
        job.setInputFormatClass(WekaInputFormat.class);

        // wait until the job is complete to exit
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

映射器类

这个类是 weka 分类器的映射器,它被赋予了一大块数据,并设置了一个分类器以在该数据上运行。该方法中还发生了许多其他处理。

   public  class WekaMap extends Mapper<Object, Text, Text, AggregateableEvaluation> {
    private Instances randData = null;
    private Classifier cls = null;

    private AggregateableEvaluation eval = null;
    private Classifier clsCopy = null;

    // Run 10 mappers
    private String numMaps = "10";

    // TODO: Make sure this is not hard-coded -- preferably a command line arg
    // Set the classifier
    private String classname = "weka.classifiers.bayes.NaiveBayes";
    private int seed = 20;

    public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
        String line = value.toString();
        System.out.println("CURRENT LINE: " + line);

        //line = "/home/ubuntu/Workspace/hadoop-1.1.0/hadoop-data/spambase_processed.arff";

        Configuration conf = new Configuration();
        FileSystem fileSystem = FileSystem.get(conf);

        Path path = new Path("/home/hduser/very_small_spam.arff");

        // Make sure the file exists...
        if (!fileSystem.exists(path)) {
            System.out.println("File does not exists");
            return;
        }

        JobID test = context.getJobID();
        TaskAttemptID tid = context.getTaskAttemptID();

        // Set up the weka configuration
        Configuration wekaConfig = context.getConfiguration();
        numMaps = wekaConfig.get("Run-num.splits");
        classname = wekaConfig.get("Run.classify");

        String[] splitter = tid.toString().split("_");
        String jobNumber = "";
        int n = 0;

        if (splitter[4].length() > 0) {
            jobNumber = splitter[4].substring(splitter[4].length() - 1);
            n = Integer.parseInt(jobNumber);
        }

        FileSystem fs = FileSystem.get(context.getConfiguration());

        System.out.println("PATH: " + path);

        // Read in the data set
        context.setStatus("Reading in the arff file...");
        readArff(fs, path.toString());
        context.setStatus("Done reading arff! Initializing aggregateable eval...");

        try {
            eval = new AggregateableEvaluation(randData);
        }
        catch (Exception e1) {
            e1.printStackTrace();
        }

        // Split the data into two sets: Training set and a testing set
        // this will allow us to use a little bit of data to train the classifier
        // before running the classifier on the rest of the dataset
        Instances trainInstance = randData.trainCV(Integer.parseInt(numMaps), n);
        Instances testInstance = randData.testCV(Integer.parseInt(numMaps), n);

        // Set parameters to be passed to the classifiers
        String[] opts = new String[3];
        if (classname.equals("weka.classifiers.lazy.IBk")) {
            opts[0] = "";
            opts[1] = "-K";
            opts[2] = "1";
        }
        else if (classname.equals("weka.classifiers.trees.J48")) {
            opts[0] = "";
            opts[1] = "-C";
            opts[2] = "0.25";
        }
        else if (classname.equals("weka.classifiers.bayes.NaiveBayes")) {
            opts[0] = "";
            opts[1] = "";
            opts[2] = "";
        }
        else {
            opts[0] = "";
            opts[1] = "";
            opts[2] = "";
        }

        // Start setting up the classifier and its various options
        try {
          cls = (Classifier) Utils.forName(Classifier.class, classname, opts);
        }
        catch (Exception e) {
            e.printStackTrace();
        }

        // These are all used for timing different processes
        long beforeAbstract = 0;
        long beforeBuildClass = 0;
        long afterBuildClass = 0;
        long beforeEvalClass = 0;
        long afterEvalClass = 0;

        try {
            // Create the classifier and record how long it takes to set up 
            context.setStatus("Creating the classifier...");
            System.out.println(new Timestamp(System.currentTimeMillis()));
            beforeAbstract = System.currentTimeMillis();
            clsCopy = AbstractClassifier.makeCopy(cls);
            beforeBuildClass = System.currentTimeMillis();
            System.out.println(new Timestamp(System.currentTimeMillis()));

            // Train the classifier on the training set and record how long this takes
            context.setStatus("Training the classifier...");
            clsCopy.buildClassifier(trainInstance);
            afterBuildClass = System.currentTimeMillis();
            System.out.println(new Timestamp(System.currentTimeMillis()));
            beforeEvalClass = System.currentTimeMillis();

            // Run the classifer on the rest of the data set and record its duration as well
            context.setStatus("Evaluating the model...");
            eval.evaluateModel(clsCopy, testInstance);
            afterEvalClass = System.currentTimeMillis();
            System.out.println(new Timestamp(System.currentTimeMillis()));

            // We are done this iteration!
            context.setStatus("Complete");
        }
        catch (Exception e) {
            System.out.println("Debugging strarts here!");
            e.printStackTrace();
        }

        // calculate the total times for each section
        long abstractTime = beforeBuildClass - beforeAbstract;
        long buildTime = afterBuildClass - beforeBuildClass;
        long evalTime = afterEvalClass - beforeEvalClass;

        // Print out the times
        System.out.println("The value of creation time: " + abstractTime);
        System.out.println("The value of Build time: " + buildTime);
        System.out.println("The value of Eval time: " + evalTime);

        context.write(new Text(line), eval);
      }

    /**
     * This can be used to write out the results on HDFS, but it is not essential
     * to the success of this project. If time allows, we can implement it.
     */
      public void writeResult() {    

      }


      /**
       * This method reads in the arff file that is provided to the program.
       * Nothing really special about the way the data is handled.
       * 
       * @param fs
       * @param filePath
       * @throws IOException
       * @throws InterruptedException
       */
      public void readArff(FileSystem fs, String filePath) throws IOException, InterruptedException {
          BufferedReader reader;
          DataInputStream d;
          ArffReader arff;
          Instance inst;
          Instances data;

          try {
              // Read in the data using a ton of wrappers
              d = new DataInputStream(fs.open(new Path(filePath)));
              reader = new BufferedReader(new InputStreamReader(d));
              arff = new ArffReader(reader, 100000);
              data = arff.getStructure();
              data.setClassIndex(data.numAttributes() - 1);

              // Add each line to the input stream
              while ((inst = arff.readInstance(data)) != null) {
                  data.add(inst);
              }

              reader.close();

              Random rand = new Random(seed);
              randData = new Instances(data);
              randData.randomize(rand);

              // This is how weka handles the sampling of the data
              // the stratify method splits up the data to cross validate it
              if (randData.classAttribute().isNominal()) {
                  randData.stratify(Integer.parseInt(numMaps));
              }
          }
          catch (IOException e) {
              e.printStackTrace();
          }
    }
}

减速机类

这个类是 weka 分类器输出的化简器,它从映射器中得到一堆交叉验证的数据块,它的工作是将数据聚合到一个解决方案中。

public  class WekaReducer extends Reducer<Text, AggregateableEvaluation, Text, IntWritable> {
     Text result = new Text();
     Evaluation evalAll = null;
     IntWritable test = new IntWritable();

     AggregateableEvaluation aggEval;

    /**
     * The reducer method takes all the stratified, cross-validated
     * values from the mappers in a list and uses an aggregatable evaluation to consolidate
     * them.
     */
    public void reduce(Text key, Iterable<AggregateableEvaluation> values, Context context) throws IOException, InterruptedException {      
        int sum = 0;

        // record how long it takes to run the aggregation
        System.out.println(new Timestamp(System.currentTimeMillis()));
        long beforeReduceTime = System.currentTimeMillis();

        // loop through each of the values and "aggregate"
        // which basically means to consolidate the values
        for (AggregateableEvaluation val : values) {
            System.out.println("IN THE REDUCER!");

            // The first time through, give aggEval a value
            if (sum == 0) {
                try {
                    aggEval = val;
                }
                catch (Exception e) {
                    e.printStackTrace();
                }
            }
            else {
                // combine the values
                aggEval.aggregate(val);
            }

            try {
                // This is what is taken from the mapper to be aggregated
                System.out.println("This is the map result");
                System.out.println(aggEval.toMatrixString());
            }
            catch (Exception e) {
                e.printStackTrace();
            }                       

            sum += 1;
        }

        // Here is where the typical weka matrix output is generated
        try {
            System.out.println("This is reduce matrix");
            System.out.println(aggEval.toMatrixString());
        }
        catch (Exception e) {
            e.printStackTrace();
        }

        // calculate the duration of the aggregation
        context.write(key, new IntWritable(sum));
        long afterReduceTime = System.currentTimeMillis();
        long reduceTime = afterReduceTime - beforeReduceTime;

        // display the output
        System.out.println("The value of reduce time is: " + reduceTime);
        System.out.println(new Timestamp(System.currentTimeMillis()));
    }
}

最后是 InputFormatClass

接受 JobContext 并返回拆分成片段的数据列表 基本上这是处理大型数据集的一种方式。这种方法允许我们将一个大数据集拆分成更小的块以跨工作节点传递(或者在我们的例子中,只是为了让生活更轻松一点,并将这些块传递给单个节点,这样它就不会被一个大数据集淹没)

    public class WekaInputFormat extends TextInputFormat {

    public List<InputSplit> getSplits(JobContext job) throws IOException {
        long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));
        long maxSize = getMaxSplitSize(job);

        List<InputSplit> splits = new ArrayList<InputSplit>();
        for (FileStatus file: listStatus(job)) {
            Path path = file.getPath();
            FileSystem fs = path.getFileSystem(job.getConfiguration());

            //number of bytes in this file
            long length = file.getLen();
            BlockLocation[] blkLocations = fs.getFileBlockLocations(file, 0, length);

            // make sure this is actually a valid file
            if(length != 0) {
                // set the number of splits to make. NOTE: the value can be changed to anything
                int count = job.getConfiguration().getInt("Run-num.splits", 1);
                for(int t = 0; t < count; t++) {
                    //split the file and add each chunk to the list
                    splits.add(new FileSplit(path, 0, length, blkLocations[0].getHosts())); 
                }
            }
            else {
                // Create empty array for zero length files
                splits.add(new FileSplit(path, 0, length, new String[0]));
            }
        }
        return splits;
    }
}
4

0 回答 0