下面是我的 Verlet 函数代码,可以从我的主脚本中调用。
% verlet.m
% uses the verlet step algorithm to integrate the simple harmonic
% oscillator.
% stepsize h, for a second-order ODE
function vout = verlet(vinverletx,h,params)
% vin is the particle vector (xn,yn)
x0 = vinverletx(1);
x1 = vinverletx(2);
% find the verlet coefficients (F=0)
D = (2*params(1))+(params(3)*h);
A = (2/D)*((2*params(1))-(params(2)*h^2));
B=(1/D)*((params(3)*h)-(2*params(1)));
x2 = (A*x1)+(B*x0);
vout = x2;
% vout is the particle vector (xn+1,yn+1)
end
我做了一个脚本来测试这个功能。上下文是简谐运动,与其他算法相比,将测试 Verlet 算法的相对准确性。
这是我的测试脚本:
% verlet test
clear all
close all
% don't define fixed paramaters every loop
h = 0.001;
m = 7.4; % Mass
k = 7.7; % Return force
b = 0; % Drag
params = [m,k,b];
% verlet
x=2; % define initial values and put into vector form
v=0;
vin = [x,v];
vstorex = vin(1);
vstorev = vin(2);
for n=1:200
if n == 1
vnext = eulerintegrate(vin,n,h,params); % the next position and velocity
vstorex = [vstorex;vnext(1)]; %#ok<*AGROW> % store xn and vn+1
vinverletx = [vin(1),vnext(1)]; % now we have two x values for the verlet algorithm!
else if n ==2
xnext=verlet(vinverletx,h,params);
vstorex = [vstorex;xnext];
else
vinverletx = [vstorex(n),vstorex(n-1)];
xnext=verlet(vinverletx,h,params);
vstorex = [vstorex;xnext];
end
end
end
plot(vstorex);
生成的情节在 0.001 步长的 200 次运行中急剧上升 - http://i.imgur.com/GF2Zdvu.png
这是 0.0001 步长的 200 次运行:http: //i.imgur.com/u0zCUWS.png
正如你很容易看出的那样,它同样会爆炸。我的代码中一定有问题(我看不到)。
提前致谢!