I am using sklearn to carry out recursive feature elimination with cross-validation, using the RFECV module. RFE involves repeatedly training an estimator on the full set of features, then removing the least informative features, until converging on the optimal number of features.
In order to obtain optimal performance by the estimator, I want to select the best hyperparameters for the estimator for each number of features(edited for clarity). The estimator is a linear SVM so I am only looking into the C parameter.
Initially, my code was as follows. However, this just did one grid search for C at the beginning, and then used the same C for each iteration.
from sklearn.cross_validation import StratifiedKFold
from sklearn.feature_selection import RFECV
from sklearn import svm, grid_search
def get_best_feats(data,labels,c_values):
parameters = {'C':c_values}
# svm1 passed to clf which is used to grid search the best parameters
svm1 = SVC(kernel='linear')
clf = grid_search.GridSearchCV(svm1, parameters, refit=True)
clf.fit(data,labels)
#print 'best gamma',clf.best_params_['gamma']
# svm2 uses the optimal hyperparameters from svm1
svm2 = svm.SVC(C=clf.best_params_['C'], kernel='linear')
#svm2 is then passed to RFECVv as the estimator for recursive feature elimination
rfecv = RFECV(estimator=svm2, step=1, cv=StratifiedKFold(labels, 5))
rfecv.fit(data,labels)
print "support:",rfecv.support_
return data[:,rfecv.support_]
The documentation for RFECV gives the parameter "estimator_params : Parameters for the external estimator. Useful for doing grid searches when an RFE object is passed as an argument to, e.g., a sklearn.grid_search.GridSearchCV object."
Therefore I want to try to pass my object 'rfecv' to the grid search object, as follows:
def get_best_feats2(data,labels,c_values):
parameters = {'C':c_values
svm1 = SVC(kernel='linear')
rfecv = RFECV(estimator=svm1, step=1, cv=StratifiedKFold(labels, 5), estimator_params=parameters)
rfecv.fit(data, labels)
print "Kept {} out of {} features".format((data[:,rfecv.support_]).shape[1], data.shape[1])
print "support:",rfecv.support_
return data[:,rfecv.support_]
X,y = get_heart_data()
c_values = [0.1,1.,10.]
get_best_feats2(X,y,c_values)
But this returns the error:
max_iter=self.max_iter, random_seed=random_seed)
File "libsvm.pyx", line 59, in sklearn.svm.libsvm.fit (sklearn/svm /libsvm.c:1674)
TypeError: a float is required
So my question is: how can I pass the rfe object to the grid search in order to do cross-validation for each iteration of recursive feature elimination?
Thanks