4

以下面的一结一阶样条为例:

library(splines)
library(ISLR)

age.grid    = seq(range(Wage$age)[1], range(Wage$age)[2])
fit.spline  = lm(wage~bs(age, knots=c(30), degree=1), data=Wage)
pred.spline = predict(fit.spline, newdata=list(age=age.grid), se=T)

plot(Wage$age, Wage$wage, col="gray")
lines(age.grid, pred.spline$fit, col="red")

# NOTE: This is **NOT** the same as fitting two piece-wise linear models becase
# the spline will add the contraint that the function is continuous at age=30
# fit.1  = lm(wage~age, data=subset(Wage,age<30))
# fit.2  = lm(wage~age, data=subset(Wage,age>=30))

样条图

有没有办法提取结前后的线性模型(及其系数)?也就是说,如何提取切点前后的两个线性模型age=30

使用summary(fit.spline)收益率系数,但(据我所知)它们对解释没有意义。

4

2 回答 2

1

fit.spline您可以像这样手动提取系数

summary(fit.spline)

Call:
lm(formula = wage ~ bs(age, knots = 30, degree = 1), data = Wage)
Coefficients:
                                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)                         54.19       4.05    13.4   <2e-16 ***
bs(age, knots = 30, degree = 1)1    58.43       4.61    12.7   <2e-16 ***
bs(age, knots = 30, degree = 1)2    68.73       4.54    15.1   <2e-16 ***
---

range(Wage$age)
## [1] 18 80
## coefficients of the first model
a1 <- seq(18, 30, length.out = 10)
b1 <- seq(54.19, 58.43+54.19, length.out = 10)
## coefficients of the second model
a2 <- seq(30, 80, length.out = 10)
b2 <- seq(54.19 + 58.43, 54.19 + 68.73, length.out = 10)
plot(Wage$age, Wage$wage, col="gray", xlim = c(0, 90))
lines(x = a1, y = b1, col = "blue" )
lines(x = a2, y = b2, col = "red")

如果您想要线性模型中的斜率系数,那么您可以简单地使用

b1 <- (58.43)/(30 - 18)
b2 <- (68.73 - 58.43)/(80 - 30)

请注意,截距表示whenfit.spline的值,而在线性模型中,截距表示when的值。wageage = 18wageage = 0

于 2015-04-08T22:23:05.097 回答
0

当您在 bspline 回归中预先指定自由度时,主要完成提取节点。例子:

fit.spline = lm(wage~bs(age, df=5), data=Wage)

attr(bs(age,df=5),"结")

33.33333% 66.66667%

  37        48

可以在第 293 页的 ISLR 书(您似乎正在使用)中找到一个示例。

于 2015-10-21T11:36:10.833 回答