在幼崽或推力中,我们只能对.w
“键”进行排序,进行键值排序,其中值只是线性递增索引:
0, 1, 2, 3, ...
然后,我们可以使用索引序列的结果重新排列来float4
一步重新排序原始数组(有效地按 排序.w
)。这将允许您保持基数排序速度(在 cub 或推力中)并且也可能相当有效,因为float4
数量只需要移动/重新排列一次,而不是在排序操作期间连续移动。
这是一个完整的推力示例,在 32M 元素上,演示了“普通”推力排序,使用函子指定对.w
元素 ( sort_f4_w
) 的排序,遵循上述方法。在这种情况下,在我的特定设置(Fedora 20、CUDA 7、Quadro5000)上,第二种方法似乎快了大约 5 倍:
$ cat t686.cu
#include <iostream>
#include <vector_types.h>
#include <stdlib.h>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/sort.h>
#include <thrust/iterator/transform_iterator.h>
#include <thrust/iterator/permutation_iterator.h>
#include <thrust/sequence.h>
#include <thrust/copy.h>
#include <thrust/equal.h>
#include <time.h>
#include <sys/time.h>
#define USECPSEC 1000000ULL
unsigned long long dtime_usec(unsigned long long start){
timeval tv;
gettimeofday(&tv, 0);
return ((tv.tv_sec*USECPSEC)+tv.tv_usec)-start;
}
#define DSIZE (32*1048576)
struct sort_f4_w
{
__host__ __device__
bool operator()(const float4 &a, const float4 &b) const {
return (a.w < b.w);}
};
// functor to extract the .w element from a float4
struct f4_to_fw : public thrust::unary_function<float4, float>
{
__host__ __device__
float operator()(const float4 &a) const {
return a.w;}
};
// functor to extract the .x element from a float4
struct f4_to_fx : public thrust::unary_function<float4, float>
{
__host__ __device__
float operator()(const float4 &a) const {
return a.x;}
};
bool validate(thrust::device_vector<float4> &d1, thrust::device_vector<float4> &d2){
return thrust::equal(thrust::make_transform_iterator(d1.begin(), f4_to_fx()), thrust::make_transform_iterator(d1.end(), f4_to_fx()), thrust::make_transform_iterator(d2.begin(), f4_to_fx()));
}
int main(){
unsigned long long t1_time, t2_time;
float4 *mydata = new float4[DSIZE];
for (int i = 0; i < DSIZE; i++){
mydata[i].x = i;
mydata[i].y = i;
mydata[i].z = i;
mydata[i].w = rand()/(float)RAND_MAX;}
thrust::host_vector<float4> h_data(mydata, mydata+DSIZE);
// do once as a warm-up run, then report timings on second run
for (int i = 0; i < 2; i++){
thrust::device_vector<float4> d_data1 = h_data;
thrust::device_vector<float4> d_data2 = h_data;
// first time sort using typical thrust approach
t1_time = dtime_usec(0);
thrust::sort(d_data1.begin(), d_data1.end(), sort_f4_w());
cudaDeviceSynchronize();
t1_time = dtime_usec(t1_time);
// now extract keys and create index values, sort, then rearrange
t2_time = dtime_usec(0);
thrust::device_vector<float> keys(DSIZE);
thrust::device_vector<int> vals(DSIZE);
thrust::copy(thrust::make_transform_iterator(d_data2.begin(), f4_to_fw()), thrust::make_transform_iterator(d_data2.end(), f4_to_fw()), keys.begin());
thrust::sequence(vals.begin(), vals.end());
thrust::sort_by_key(keys.begin(), keys.end(), vals.begin());
thrust::device_vector<float4> result(DSIZE);
thrust::copy(thrust::make_permutation_iterator(d_data2.begin(), vals.begin()), thrust::make_permutation_iterator(d_data2.begin(), vals.end()), result.begin());
cudaDeviceSynchronize();
t2_time = dtime_usec(t2_time);
if (!validate(d_data1, result)){
std::cout << "Validation failure " << std::endl;
}
}
std::cout << "thrust t1 time: " << t1_time/(float)USECPSEC << "s, t2 time: " << t2_time/(float)USECPSEC << std::endl;
}
$ nvcc -o t686 t686.cu
$ ./t686
thrust t1 time: 0.731456s, t2 time: 0.149959
$