9

我正在尝试解决一个程序,在该程序中,我必须找到给定路线列表连接的最大城市数。

例如:如果给定的路线是[['1', '2'], ['2', '4'], ['1', '11'], ['4', '11']] 连接的最大城市,那么4 我无法访问我已经访问过的城市。

我需要想法,比如如何进步。

现在,我的想法是,如果我能够创建一个以城市为键的字典,以及它连接到的其他多少个城市作为它的值,我就会接近解决方案(我希望)。例如:我的字典将{'1': ['2', '11'], '4': ['11'], '2': ['4']} 用于上述给定的输入。如果我遗漏任何东西,我希望得到帮助以进一步进行指导。

4

2 回答 2

27

您可以使用 adefaultdict从边缘/路径列表中创建“图表”:

edges = [['1', '2'], ['2', '4'], ['1', '11'], ['4', '11']]

G = defaultdict(list)
for (s,t) in edges:
    G[s].append(t)
    G[t].append(s)

print G.items()

输出:

[
  ('1', ['2', '11']),
  ('11', ['1', '4']),
  ('2', ['1', '4']),
  ('4', ['2', '11'])
]

请注意,我在两个方向上都添加了边,因为您正在使用无向图。因此,对于边缘 (a,b),G[a]将包括b并且G[b]将包括a.

由此,您可以使用深度优先搜索广度优先搜索等算法来发现图中的所有路径。

在以下代码中,我使用了 DFS:

def DFS(G,v,seen=None,path=None):
    if seen is None: seen = []
    if path is None: path = [v]

    seen.append(v)

    paths = []
    for t in G[v]:
        if t not in seen:
            t_path = path + [t]
            paths.append(tuple(t_path))
            paths.extend(DFS(G, t, seen[:], t_path))
    return paths

您可以使用它:

G = defaultdict(list)
for (s,t) in edges:
    G[s].append(t)
    G[t].append(s)

print DFS(G, '1')

输出:

[('1', '2'), ('1', '2', '4'), ('1', '2', '4', '11'), ('1', '11' '), ('1', '11', '4'), ('1', '11', '4', '2')]

所以完整的代码,最后一位显示最长的路径:

from collections import defaultdict

def DFS(G,v,seen=None,path=None):
    if seen is None: seen = []
    if path is None: path = [v]

    seen.append(v)

    paths = []
    for t in G[v]:
        if t not in seen:
            t_path = path + [t]
            paths.append(tuple(t_path))
            paths.extend(DFS(G, t, seen[:], t_path))
    return paths


# Define graph by edges
edges = [['1', '2'], ['2', '4'], ['1', '11'], ['4', '11']]

# Build graph dictionary
G = defaultdict(list)
for (s,t) in edges:
    G[s].append(t)
    G[t].append(s)

# Run DFS, compute metrics
all_paths = DFS(G, '1')
max_len   = max(len(p) for p in all_paths)
max_paths = [p for p in all_paths if len(p) == max_len]

# Output
print("All Paths:")
print(all_paths)
print("Longest Paths:")
for p in max_paths: print("  ", p)
print("Longest Path Length:")
print(max_len)

输出:

所有路径:
   [('1', '2'), ('1', '2', '4'), ('1', '2', '4', '11'), ('1', '11' '), ('1', '11', '4'), ('1', '11', '4', '2')]
最长路径:
   ('1', '2', '4', '11')
   ('1', '11', '4', '2')
最长路径长度:
   4

请注意,搜索的“起点”由DFS函数的第二个参数指定,在这种情况下,它是'1'.


更新: 正如评论中所讨论的,上面的代码假设您有一个起点(特别是代码使用标记为 的节点'1')。

如果您没有这样的起点,更通用的方法是从每个节点开始执行搜索,并采取总体最长的时间。(注意:实际上,你可能比这更聪明)

换行

all_paths = DFS(G, '1')

all_paths = [p for ps in [DFS(G, n) for n in set(G)] for p in ps]

会给你任何两点之间最长的路径。

(这是一个愚蠢的列表理解,但它只允许我更新一行。更清楚地说,它相当于以下内容:

all_paths = []
for node in set(G.keys()):
    for path in DFS(G, node):
        all_paths.append(path)

或者

from itertools import chain
all_paths = list(chain.from_iterable(DFS(G, n) for n in set(G)))

)。

于 2015-03-28T19:03:46.240 回答
0

这是我的代码,适用于示例中的输入,但如果我稍微调整输入,代码无法给出正确连接的城市数量。

def dfs(graph, start, visited=None):
if visited is None:
    visited = set()
visited.add(start)
#had to do this for the key error that i was getting if the start doesn't
#have any val.
if isinstance(start,str) and start not in graph.keys():
    pass
else:
    for next in set(graph[start]) - visited:
        dfs(graph, next, visited)
return visited

def maxno_city(input1):
totalcities = []
max_nocity = 0
routedic = {}
#dup = []
rou = []
for cities in input1:
    cities = cities.split('#')
    totalcities.append(cities)
print (totalcities)
for i in totalcities:
    if i[0] in routedic.keys():
        routedic[i[0]].append(i[1])
    else:
        routedic.update({i[0]:[i[1]]})
print(routedic)
keys = routedic.keys()
newkeys = []
for i in keys:
    newkeys.append(i)
print (newkeys)
newkeys.sort()
print (newkeys)
expath = dfs(routedic,newkeys[0])
return(len(expath))

上面给定输入的输出是44但如果输入更改为如下所示: ['1#2','2#3','1#11','3#11','4#11','4#5','5#6','5#7','6#7','4#12','8#12','9#12','8#10','9#10',8#9] 我的代码失败。

谢谢,学习忍者:D

于 2015-03-28T19:12:48.347 回答