以下代码用于使用 gstat 包在 R 中使用克里金法预测三个位置的 v 值。
library(gstat);
library(sp);
walk470 <- read.table("D:/kriging/walk470.txt",header=T)
attach(walk470)
coordinates(walk470) = ~x+y
walk.var1 <- variogram(v ~ x+y,data=walk470,width=10)
plot(walk.var1,xlab="Distance",ylab="Semivariance",main="Variogram for V, Lag Spacing = 5")
model1.out <- fit.variogram(walk.var1,vgm(70000,"Sph",40,20000))
plot(walk.var1, model=model1.out,xlab="Distance",ylab="Semivariance",main="Variogram for V, Lag Spacing = 10")
predpts <- matrix(c(60,190,225,50,110,185),ncol=2,byrow=T)
predpts.g <- data.frame(x=predpts[,1],y=predpts[,2])
coordinates(predpts.g) <- ~x+y
g <- gstat(NULL,"new.v",v~1,data=walk470,model=model1.out)
three.pred <- predict(g,predpts.g)
print(three.pred)
我想知道为什么为了拟合变异函数模型,我们需要预先使用 vgm() 方法提供窗台、块金和范围值。根据克里金理论,我认为我们必须通过最小化 WLS 目标函数来计算这些值。
〜问候,钱丹