1

我正在使用geoR包进行降雨空间插值。我不得不说我对地统计学很陌生。感谢 youtube 上的一些视频教程,我理解了(嗯,我想是的)变异函数背后的理论。根据我的理解,对的数量应该随着滞后距离的增加而减少。例如,如果我们考虑一个 100m 长的延伸(例如 100m 长的河床横截面),5m 滞后的对数为 20,10m 滞后的对数为 10,依此类推。但是我对包中variog函数的输出有点困惑。geoR下面给出一个例子

mydata
          X      Y        a
[1,] 415720 432795 2.551415
[2,] 415513 432834 2.553177
[3,] 415325 432740 2.824652
[4,] 415356 432847 2.751844
[5,] 415374 432858 2.194091
[6,] 415426 432774 2.598897
[7,] 415395 432811 2.699066
[8,] 415626 432762 2.916368

这是我的数据集,其中a是我的变量(降雨强度)并且x, y是点的坐标。变异函数计算如下所示

geodata=as.geodata(data,header=TRUE)
variogram=variog(geodata,coords=geodata$coords,data=geodata$data)
variogram[1:3]
$u
[1]  46.01662 107.37212 138.04987 199.40537 291.43861 352.79411

$v
[1] 0.044636453 0.025991469 0.109742986 0.029081575 0.006289056 0.041963076

$n
[1] 3 8 3 3 3 2

在哪里

u:带距离的向量。

v:在 u 中给出的距离处具有估计的变异函数值的向量。

n:每个 bin 中的对数

据此,对数 (n) 具有随机模式,而相应的滞后距离 (u) 正在增加。我觉得很难理解这一点。谁能解释发生了什么?此外,由于我是地统计学新手,因此非常感谢任何改进此应用程序的变异函数计算(降雨强度的空间插值)的建议/建议。提前致谢。

4

1 回答 1

1

在 100 m 的线性样带上,观测值之间的规则间距为 5 m,如果滞后 5 m 时有 20 对,则滞后 10 m 时将有 19 对。这个想法不适用于您的数据,因为它们是不规则分布的,并且分布在两个维度上。对于不规则分布的数据,对于非常短的距离,您通常只有很少的点对。获得更好看的变异函数的建议是使用更大的数据集:地质统计学开始变得有趣,有 30 次观察,而有趣的是超过 100 次观察。

于 2015-03-21T14:30:13.813 回答