在新硬件上将Postgres 从8.3.8升级到9.4.1。一组具有代表性的查询表明,新系统的性能提高了 1 倍到 3 倍。但是,我们的高负载区域之一总是较慢。
EXPLAIN
输出
8.3.8:
Nested Loop (cost=25.78..709859.61 rows=1 width=4) (actual time=14.972..190.591 rows=32 loops=1)
-> Bitmap Heap Scan on prime p (cost=25.78..1626.92 rows=1066 width=4) (actual time=1.567..9.597 rows=10742 loops=1)
Recheck Cond: ((pid = ANY ('{28226,53915,83421,82118397,95513866}'::integer[])) AND (tid = ANY ('{1,2,3}'::integer[])))
Filter: (NOT deleted)
-> Bitmap Index Scan on FOO_IDX1 (cost=0.00..25.73 rows=1066 width=0) (actual time=1.144..1.144 rows=10742 loops=1)
Index Cond: ((pid = ANY ('{28226,53915,83421,82118397,95513866}'::integer[])) AND (deleted = false) AND (tid = ANY ('{1,2,3}'::integer[])))
-> Index Scan using FOO_IDX2 on data d (cost=0.00..663.88 rows=1 width=4) (actual time=0.017..0.017 rows=0 loops=10742)
Index Cond: (d.pid = p.pid)
Filter: (lower("substring"(d.value, 1, 1000)) ~~ '%something%'::text)
Total runtime: 190.639 ms
9.4.1:
Nested Loop (cost=1.15..335959.94 rows=1 width=4) (actual time=24.712..365.057 rows=32 loops=1)
-> Index Scan using FOO_IDX1 on prime p (cost=0.57..953.17 rows=1033 width=4) (actual time=0.048..13.884 rows=10741 loops=1)
Index Cond: ((pid = ANY ('{28226,53915,83421,82118397,95513866}'::integer[])) AND (deleted = false) AND (tid = ANY ('{1,2,3}'::integer[])))
Filter: (NOT deleted)
-> Index Scan using FOO_IDX2 on data d (cost=0.57..324.29 rows=1 width=4) (actual time=0.032..0.032 rows=0 loops=10741)
Index Cond: (pid = p.pid)
Filter: (lower("substring"(value, 1, 1000)) ~~ '%something%'::text)
Rows Removed by Filter: 11
Planning time: 0.940 ms
Execution time: 365.156 ms
索引
…btree (pid);
…btree (lower("substring"(value, 1, 1000)) text_pattern_ops, fid);
…btree (lower("substring"(value, 1, 1000)), fid);
设置
改变以下范围并没有改善这种情况……</p>
checkpoint_completion_target = 0.5
checkpoint_segments = 32
checkpoint_timeout = 30min
cpu_index_tuple_cost = 0.005
cpu_operator_cost = 0.0025
cpu_tuple_cost = 0.01
default_statistics_target = 500 (evaluated 100 to 10000 analyse after each)
effective_cache_size = 288GB
enable_seqscan = off
from_collapse_limit = 8
geqo = off
join_collapse_limit = 8
random_page_cost = 1.0
seq_page_cost = 1.0
shared_buffers = 96GB
work_mem = 64MB
我们也看到了类似的结果something%
。
在我们放弃这个几年之前,我想知道我是否可以做更多的事情来优化这些重要的案例。
陈述
SELECT p.pid
FROM prime p
INNER JOIN data d ON p.pid = d.pid
WHERE LOWER(substring(d.value,1,1000)) LIKE '%something%'
AND p.tid IN (1,2,3)
AND p.deleted = FALSE
AND p.ppid IN (28226, 53915, 83421, 82118397, 95513866)
表定义
简化和消毒。
\d prime
Column | Type | Modifiers
---------------+-----------------------------+-------------------------------------------------
pid | integer | not null default nextval('prime_seq'::regclass)
deleted | boolean |
ppid | integer |
tid | integer |
\d data
Column | Type | Modifiers
----------------+---------+------------------------------------------------------
pdid | integer | not null default nextval('data_seq'::regclass)
pid | integer |
value | text |
新的测试结果
我已经尝试了一系列 default_statistics_target。
default_statistics_target = 100 @ 381 ms
default_statistics_target = 500 @ 387 ms
default_statistics_target = 1000 @ 384 ms
default_statistics_target = 5000 @ 369 ms
(在测试周期之间分析和预热)
该值可以在我们应用程序的其他领域产生重大影响。500 似乎很理想,5000+ 导致其他区域减速 3 倍到 10 倍。
我们的工具包的设计使得整个数据库应该始终在内存中。
random_page_cost = 1.0 @ 372 ms
random_page_cost = 1.1 @ 372 ms
random_page_cost = 4.0 @ 370 ms
random_page_cost = 10.0 @ 369 ms
使用 enable_bitmapscan = off @ 362 ms(结果与预期的计划相同)
早些时候我也试过 enable_indexscan = off @ 491 ms (当然触发了不同的计划)
是的,pg 8.3 的计划使用索引和位图索引扫描——我认为这是这个问题的“坚果”。
感谢您提供相关文章的链接。
关于列顺序的建议非常有趣。
在我们的规模和增长中,以下模式的最佳字段顺序是什么?
重组已加载表上的列顺序以实现收益的最有效方法是什么?
素数具有:
integer
text
boolean
boolean
integer
integer
smallint
integer
timestamp without time zone
timestamp without time zone
timestamp without time zone
text
数据具有:
integer
integer
integer
text
SELECT pid
FROM data d
JOIN prime p USING (pid)
WHERE LOWER(substring(d.value,1,1000)) LIKE '%something%'
AND p.ppid IN (28226, 53915, 83421, 82118397, 95513866)
AND p.tid IN (1, 2, 3)
AND p.deleted = FALSE;
- 在这种方法中没有观察到可测量的差异,相同的计划(+/- 5 毫秒)
- 我们一般先尝试缩小data中搜索记录的范围,先用prime来检查acl、status等(prime是大小的1/10)
lower(substring(d.value,1,1000)) = 355 ms
lower(left(d.value,1000)) = 343 ms (~3% faster over multiple tests, I'll take that!)
为了处理未锚定的情况,我们使用操作符类“text_pattern_ops”有第二个索引。
我们之前评估过多列 GIN 索引,但没有实现预期的收益。复杂,因为 A) 在 acl、状态和类似方面要满足多个标准,B) 需要点击“精确短语”,这需要重新检查结果短语。我对长期使用全文方法持乐观态度,到目前为止,我们尝试过的食谱并不比老式的 BTREE 方法更快或更稳定;然而。
杜松子酒试验 1
CREATE EXTENSION btree_gin
CREATE INDEX FOO_IDX3 ON data USING GIN (to_tsvector('simple', lower(left(value, 1000))), pid)
ANALYSE data
SELECT p.pid
FROM prime p
INNER JOIN data d ON p.pid = d.pid
WHERE to_tsvector('simple', lower(left(d.value, 1000))) @@ to_tsquery('simple', 'something')
AND p.tid IN (1,2,3)
AND p.deleted = FALSE
AND p.ppid IN (28226, 53915, 83421, 82118397, 95513866)
Execution time: 1034.866 ms (without phrase recheck)
杜松子酒试验 2
CREATE EXTENSION pg_trgm
CREATE INDEX FOO_IDX4 ON data USING gin (left(value,1000) gin_trgm_ops, pid);
ANALYSE data
SELECT p.pid
FROM prime p
INNER JOIN data d ON p.pid = d.pid
WHERE left(d.value,1000) LIKE '%Something%'
AND p.tid IN (1,2,3)
AND p.deleted = FALSE
AND p.ppid IN (28226, 53915, 83421, 82118397, 95513866)
Hash Join (cost=2870.42..29050.89 rows=1 width=4) (actual time=668.333..2262.101 rows=32 loops=1)
Hash Cond: (d.pid = p.pid)
-> Bitmap Heap Scan on data d (cost=230.30..26250.04 rows=25716 width=4) (actual time=653.130..2234.736 rows=38659 loops=1)
Recheck Cond: ("left"(value, 1000) ~~ '%Something%'::text)
Rows Removed by Index Recheck: 146677
Heap Blocks: exact=161810
-> Bitmap Index Scan on FOO_IDX4 (cost=0.00..223.87 rows=25716 width=0) (actual time=575.442..575.442 rows=185336 loops=1)
Index Cond: ("left"(value, 1000) ~~ '%Something%'::text)
-> Hash (cost=2604.33..2604.33 rows=2863 width=4) (actual time=15.158..15.158 rows=10741 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 378kB
-> Index Scan using FOO_IDX4 on prime p (cost=0.57..2604.33 rows=2863 width=4) (actual time=0.064..11.737 rows=10741 loops=1)
Index Cond: ((ppid = ANY ('{28226,53915,83421,82118397,95513866}'::integer[])) AND (deleted = false) AND (tid = ANY ('{1,2,3}'::integer[])))
Filter: (NOT deleted)
Planning time: 1.861 ms
Execution time: 2262.210 ms
我们已经有一个带有“ppid,deleted,tid”的素数索引,抱歉,最初并不清楚。