我一直在尝试绘制一个预先计算好的类似于 2D 直方图的数据集。我必须使用线性/对数 z 轴针对线性 y 轴绘制对数 x 轴。但是, pcolor 会删除最后一行和最后一列,这是一个问题,因为必须绘制最高能量值。Imshow 只是不适用于对数轴。
我正在考虑必须用 NaN 填充数组才能正确绘制。有没有我可以使用的纯绘图程序?谢谢。
示例代码:
# INITIALIZATION
alpha_bounds = [0.0, 90.0]
alpha_step = 15.0
all_alphas = np.arange(alpha_bounds[0], alpha_bounds[1], alpha_step)
beta_bounds = [0.0, 360.0]
beta_step = 45.0
all_betas = np.arange(beta_bounds[0], beta_bounds[1], beta_step)
energy_bounds = [2e3, 5e6]
n_energies = 15
all_energies = np.logspace(
np.log10(energy_bounds[0]), np.log10(energy_bounds[1]), n_energies)
all_locations =\
[(-52.5, 180.0, r - 1), (-77.5, 260.0, r - 1)]
alts = np.linspace(
70.0, 600.0, 500)
# ARRAY TO GET ELOSS PER ALT, LOC, BETA, ALPHA, ENERGY
# Changed np.zeros to np.ones for testing
eloss_per_alt_per_process = np.ones(
(len(all_locations),
len(all_alphas), len(all_betas), len(all_energies),
len(alts), len(processes)))
# CODE HERE TO COUNT ELOSS PER ALT, LOC, BETA, ALPHA, ENERGY
# SUM OVER TWO AXES
eloss_per_alt_per_process[0, 0, 0, 0,
:, :] = np.sum(eloss_per_alt, axis=(1, 2))
# PLOTTING
ALT, E = np.meshgrid(np.array(all_energies), alts)
eloss = np.transpose(
eloss_per_alt_per_process[0, 0, 0, :, :, 2])
if np.any(eloss):
plt.figure()
plt.pcolor(
ALT, E, eloss) #, norm=LogNorm()) #, vmin=1e-1,
# vmax=ncoll.max())
plt.xscale('log')
plt.show()