我正在尝试使用稀疏矩阵作为 ELKI SOD 算法中的输入数据来检测异常值。我在 howto 和 faqs 页面中寻找关于稀疏数据的帮助,所以我尝试像这样使用 SparseNumberVectorLabelParser 和 SparseVectorFieldFilter:
//data is a mxn matrix
ArrayAdapterDatabaseConnection dataArray = new ArrayAdapterDatabaseConnection(data);
SparseDoubleVector.Factory sparseVector = new SparseDoubleVector.Factory();
SparseNumberVectorLabelParser<SparseDoubleVector> parser = new SparseNumberVectorLabelParser<SparseDoubleVector>(Pattern.compile("s*[,;s]s*")," \" ",Pattern.compile("^s*(#|//|;).*$"),null, sparseVector);
SparseVectorFieldFilter<SparseDoubleVector> sparseFilter = new SparseVectorFieldFilter<SparseDoubleVector>();
ListParameterization params = new ListParameterization();
params.addParameter(AbstractDatabase.Parameterizer.DATABASE_CONNECTION_ID, dataArray);
params.addParameter(AbstractDatabaseConnection.Parameterizer.PARSER_ID, parser);
params.addParameter(AbstractDatabaseConnection.Parameterizer.FILTERS_ID, sparseFilter);
Database db = ClassGenericsUtil.parameterizeOrAbort(StaticArrayDatabase.class, params);
db.initialize();
params = new ListParameterization();
params.addParameter(SOD.Parameterizer.KNN_ID, 25);
params.addParameter(SharedNearestNeighborPreprocessor.Factory.NUMBER_OF_NEIGHBORS_ID, 10);
SOD<DoubleVector> sodAlg = ClassGenericsUtil.parameterizeOrAbort(SOD.class, params);
OutlierResult result = sodAlg.run(db);
但我有这个运行时异常:
Exception in thread "main" de.lmu.ifi.dbs.elki.data.type.NoSupportedDataTypeException: No data type found satisfying: NumberVector,field
Available types: DBID DoubleVector,field,mindim=7606,maxdim=12968
at de.lmu.ifi.dbs.elki.database.AbstractDatabase.getRelation(AbstractDatabase.java:154)
at de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm.run(AbstractAlgorithm.java:80)
这是在 java 代码中使用 SparseNumberVectorLabelParser 和 SparseVectorFieldFilter 的正确方法吗?