这是分层预测的一个已知有趣(而且通常很痛苦!)的问题。在训练数据上训练多个预测器,然后在它们上训练更高的预测器,再次使用训练数据的问题 - 与偏差 - 方差分解有关。
假设您有两个预测变量,一个本质上是另一个的过拟合版本,那么前者将出现在训练集上优于后者。组合预测器会无缘无故地偏爱前者,只是因为它无法区分过拟合和真正的高质量预测。
处理这个问题的已知方法是,对于训练数据中的每一行,对于每个预测变量,基于不适合该行的模型为该行准备一个预测。例如,对于过拟合版本,平均而言,这不会为行产生好的结果。然后,组合预测器将能够更好地评估用于组合较低级别预测器的公平模型。
Shahar Azulay 和我写了一个变压器阶段来处理这个问题:
class Stacker(object):
"""
A transformer applying fitting a predictor `pred` to data in a way
that will allow a higher-up predictor to build a model utilizing both this
and other predictors correctly.
The fit_transform(self, x, y) of this class will create a column matrix, whose
each row contains the prediction of `pred` fitted on other rows than this one.
This allows a higher-level predictor to correctly fit a model on this, and other
column matrices obtained from other lower-level predictors.
The fit(self, x, y) and transform(self, x_) methods, will fit `pred` on all
of `x`, and transform the output of `x_` (which is either `x` or not) using the fitted
`pred`.
Arguments:
pred: A lower-level predictor to stack.
cv_fn: Function taking `x`, and returning a cross-validation object. In `fit_transform`
th train and test indices of the object will be iterated over. For each iteration, `pred` will
be fitted to the `x` and `y` with rows corresponding to the
train indices, and the test indices of the output will be obtained
by predicting on the corresponding indices of `x`.
"""
def __init__(self, pred, cv_fn=lambda x: sklearn.cross_validation.LeaveOneOut(x.shape[0])):
self._pred, self._cv_fn = pred, cv_fn
def fit_transform(self, x, y):
x_trans = self._train_transform(x, y)
self.fit(x, y)
return x_trans
def fit(self, x, y):
"""
Same signature as any sklearn transformer.
"""
self._pred.fit(x, y)
return self
def transform(self, x):
"""
Same signature as any sklearn transformer.
"""
return self._test_transform(x)
def _train_transform(self, x, y):
x_trans = np.nan * np.ones((x.shape[0], 1))
all_te = set()
for tr, te in self._cv_fn(x):
all_te = all_te | set(te)
x_trans[te, 0] = self._pred.fit(x[tr, :], y[tr]).predict(x[te, :])
if all_te != set(range(x.shape[0])):
warnings.warn('Not all indices covered by Stacker', sklearn.exceptions.FitFailedWarning)
return x_trans
def _test_transform(self, x):
return self._pred.predict(x)
这是@MaximHaytovich 的答案中描述的设置的改进示例。
首先,一些设置:
from sklearn import linear_model
from sklearn import cross_validation
from sklearn import ensemble
from sklearn import metrics
y = np.random.randn(100)
x0 = (y + 0.1 * np.random.randn(100)).reshape((100, 1))
x1 = (y + 0.1 * np.random.randn(100)).reshape((100, 1))
x = np.zeros((100, 2))
请注意x0
和x1
只是嘈杂的y
. 我们将前 80 行用于训练,后 20 行用于测试。
这是两个预测器:一个高方差梯度增强器和一个线性预测器:
g = ensemble.GradientBoostingRegressor()
l = linear_model.LinearRegression()
以下是答案中建议的方法:
g.fit(x0[: 80, :], y[: 80])
l.fit(x1[: 80, :], y[: 80])
x[:, 0] = g.predict(x0)
x[:, 1] = l.predict(x1)
>>> metrics.r2_score(
y[80: ],
linear_model.LinearRegression().fit(x[: 80, :], y[: 80]).predict(x[80: , :]))
0.940017788444
现在,使用堆叠:
x[: 80, 0] = Stacker(g).fit_transform(x0[: 80, :], y[: 80])[:, 0]
x[: 80, 1] = Stacker(l).fit_transform(x1[: 80, :], y[: 80])[:, 0]
u = linear_model.LinearRegression().fit(x[: 80, :], y[: 80])
x[80: , 0] = Stacker(g).fit(x0[: 80, :], y[: 80]).transform(x0[80:, :])
x[80: , 1] = Stacker(l).fit(x1[: 80, :], y[: 80]).transform(x1[80:, :])
>>> metrics.r2_score(
y[80: ],
u.predict(x[80:, :]))
0.992196564279
堆叠预测效果更好。它意识到梯度增强器并不是那么好。