全部 - 我希望你能提供帮助,因为这是我知道我几乎从这里和在线的各种帖子中破解的任务之一,但还没有完全发挥作用。
本质上,我在通过 psql.read_sql(sql, cnxn) 返回到 Pandas 对象的数据库中有以下数据
+------------------------------------+
| StartTime StartLevel |
+------------------------------------+
| 0 2015-02-16 00:00:00 480.000 |
| 1 2015-02-16 00:30:00 480.000 |
| 2 2015-02-16 00:34:00 390.000 |
| 3 2015-02-16 01:00:00 390.000 |
| 4 2015-02-16 01:30:00 390.000 |
| 5 2015-02-16 02:00:00 480.000 |
| 6 2015-02-16 02:17:00 420.000 |
+------------------------------------+
StartTime datetime64[ns]
StartLevel float64
dtype: object
我只想对上述数据进行逐分钟插值。
我还以分钟的频率创建了一个日期时间序列,但在我的一生中,我无法将我的表“映射”到这个上,然后插值或者我如何将 StartTime 重新采样到分钟粒度,然后插值丢失的数据.
任何帮助将不胜感激(我确信当我找到解决方案时我会踢自己!) - 非常感谢
更新
按照下面的建议,代码如下:
import datetime
import numpy as np
import pandas as pd
import pyodbc
import pandas.io.sql as psql
cnxn = pyodbc.connect('DSN=MySQL;DATABASE=db;UID=uid;PWD=pwd')
cursor = cnxn.cursor()
sql = """
SELECT
StartTime,StartLevel
FROM
aa.bb
where cc = 'dd'
and StartTime < '2015-02-16 02:30:00'
order by StartTime asc"""
old_df = psql.read_sql(sql, cnxn)
num_minutes = 120
base = datetime.datetime(2015, 02, 16, 00, 00, 00)
date_list = [base + datetime.timedelta(minutes=x) for x in range(0, num_minutes)]
# set num_minutes for whatever is the correct number of minutes you require
new_data = [dict(StartTime=d, fake_val=np.NaN) for d in date_list]
new_df = pd.DataFrame(new_data)
new_df['StartLevel'] = old_df['StartLevel']
new_df.interpolate(inplace=True)
提示时 new_df 的输出是:
+-----------------------------------------------+
| StartTime fake_val StartLevel |
+-----------------------------------------------+
| 0 2015-02-16 00:00:00 NaN 480 |
| 1 2015-02-16 00:01:00 NaN 480 |
| 2 2015-02-16 00:02:00 NaN 390 |
| 3 2015-02-16 00:03:00 NaN 390 |
| 4 2015-02-16 00:04:00 NaN 390 |
| 5 2015-02-16 00:05:00 NaN 480 |
| 6 2015-02-16 00:06:00 NaN 480 |
+-----------------------------------------------+