我正在为上下文强盗运行此示例,以他们的示例数据为例:
1:2:0.4 | a c
3:0.5:0.2 | b d
4:1.2:0.5 | a b c
2:1:0.3 | b c
3:1.5:0.7 | a d
以命令作为他们的建议:
vw -d train.dat --cb 4 --cb_type dr -f traindModel
我想知道如何从该命令中提取策略以及如何解释它?
然后我去
vw -d train.dat --invert_hash traindModel
并收到这样的输出
Num weight bits = 18
learning rate = 0.5
initial_t = 0
power_t = 0.5
using no cache
Reading datafile = ../r-mkosinski/train.dat
num sources = 1
average since example example current current current
loss last counter weight label predict features
1.000000 1.000000 1 1.0 1.0000 0.0000 3
4.439352 7.878704 2 2.0 3.0000 0.1931 3
4.457758 4.476164 4 4.0 2.0000 1.4285 3
finished run
number of examples per pass = 5
passes used = 1
weighted example sum = 5
weighted label sum = 13
average loss = 4.14973
best constant = 2.6
total feature number = 16
如何解释这些结果?如何提取策略?
我也尝试过这种类型的命令:
vw -d train.dat --cb 4 --cb_type dr --invert_hash p2222.txt
并得到以下结果:
Version 7.8.0
Min label:0.000000
Max label:5.000000
bits:18
0 pairs:
0 triples:
lda:0
0 ngram:
0 skip:
options: --cb 4 --cb_type dr --csoaa 4
:0
^a:108232:0.263395
^a:108233:-0.028344
^a:108234:0.140435
^a:108235:0.215673
^a:108236:0.234253
^a:108238:0.203977
^a:108239:0.182416
^b:129036:-0.061075
^b:129037:0.242713
^b:129038:0.229821
^b:129039:0.206961
^b:129041:0.185534
^b:129042:0.137167
^b:129043:0.182416
^c:219516:0.264300
^c:219517:0.242713
^c:219518:-0.158527
^c:219519:0.206961
^c:219520:0.234253
^c:219521:0.185534
^c:219523:0.182416
^d:20940:-0.058402
^d:20941:-0.028344
^d:20942:0.372860
^d:20943:-0.056001
^d:20946:0.326036
Constant:202096:0.263742
Constant:202097:0.242226
Constant:202098:0.358272
Constant:202099:0.205581
Constant:202100:0.234253
Constant:202101:0.185534
Constant:202102:0.326036
Constant:202103:0.182416
d
为什么输出只有 5 条记录,而c
, b
,有 7 条记录a
?它是否对应于数据中出现 3 次且仅 2 次的特征c
, b
, ?还有8个常量行..它们对应什么?a
d