0

I am to apply a warpperspective using opencv to mount a mosaic with varios images, but, i am with a very problem...

When i applied a cvWarpPerspective, a generate image don't show in window. Appear just a part of image and i need to know how to discover a coordinates (0,0) of my image after to apply a warpperspective. Is possible see, that in first image, a part of image is cut if to compare with a second image presented here.

Therefore, my problem is: how to discover coordinates of start after to apply a warpperspective ? I need help to solve this problem. How can i solve this problem using tool of opencv ? How can i solve this problem using opencv ?

This is my code:

#include <stdio.h>
#include <iostream>

#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/imgproc/imgproc.hpp"

using namespace cv;

void readme();

/** @function main */
int main( int argc, char** argv )
{


// Load the images
 Mat image1= imread( "f.jpg");
 Mat image2= imread( "e.jpg" );
 Mat gray_image1;
 Mat gray_image2;
 // Convert to Grayscale
 cvtColor( image1, gray_image1, CV_RGB2GRAY );
 cvtColor( image2, gray_image2, CV_RGB2GRAY );

imshow("first image",image2);
 imshow("second image",image1);


//-- Step 1: Detect the keypoints using SURF Detector
 int minHessian = 100;

SurfFeatureDetector detector( minHessian );

std::vector< KeyPoint > keypoints_object, keypoints_scene;

detector.detect( gray_image1, keypoints_object );
 detector.detect( gray_image2, keypoints_scene );

//-- Step 2: Calculate descriptors (feature vectors)
 SurfDescriptorExtractor extractor;

Mat descriptors_object, descriptors_scene;

extractor.compute( gray_image1, keypoints_object, descriptors_object );
 extractor.compute( gray_image2, keypoints_scene, descriptors_scene );

//-- Step 3: Matching descriptor vectors using FLANN matcher
 FlannBasedMatcher matcher;
 std::vector< DMatch > matches;
 matcher.match( descriptors_object, descriptors_scene, matches );

double max_dist = 0; double min_dist = 100;

//-- Quick calculation of max and min distances between keypoints
 for( int i = 0; i < descriptors_object.rows; i++ )
 { double dist = matches[i].distance;
 if( dist < min_dist ) min_dist = dist;
 if( dist > max_dist ) max_dist = dist;
 }

printf("-- Max dist : %f \n", max_dist );
 printf("-- Min dist : %f \n", min_dist );

//-- Use only "good" matches (i.e. whose distance is less than 3*min_dist )
 std::vector< DMatch > good_matches;

for( int i = 0; i < descriptors_object.rows; i++ )
 { if( matches[i].distance < 3*min_dist )
 { good_matches.push_back( matches[i]); }
 }
 std::vector< Point2f > obj;
 std::vector< Point2f > scene;

for( int i = 0; i < good_matches.size(); i++ )
 {
 //-- Get the keypoints from the good matches
 obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
 scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
 }

// Find the Homography Matrix
Mat H = findHomography( obj, scene, CV_RANSAC);
 // Use the Homography Matrix to warp the images
 cv::Mat result;
 warpPerspective(image1,result,H,cv::Size());
 imshow("WARP", result);
 cv::Mat half(result,cv::Rect(0,0,image2.cols,image2.rows));
 image2.copyTo(half);

 Mat key;
 //drawKeypoints(image1,keypoints_scene,key,Scalar::all(-1), DrawMatchesFlags::DEFAULT );
 //drawMatches(image2, keypoints_scene, image1, keypoints_object, matches, result);

 imshow( "Result", result );

imwrite("teste.jpg", result);
 waitKey(0);
 return 0;
 }

/** @function readme */
 void readme()
 { std::cout << " Usage: Panorama < img1 > < img2 >" << std::endl; }

In this image appears a second image cut. See enter image description here

I want that my image appears in this form:
enter image description here

4

1 回答 1

1

下面的修改应该可以解决您删除拼接图像的黑色部分的问题。

尝试更改此行:

warpPerspective(image1,result,H,cv::Size());

warpPerspective(image1,result,H,cv::Size(image1.cols+image2.cols,image1.rows));

这将创建result行数等于 的矩阵image1,从而避免创建不需要的行。

于 2015-06-20T21:57:53.230 回答