我编写了一个名为 muzz 的函数,它利用fuzzywuzzy 模块来“合并”两个pandas 数据帧。效果很好,但在较大的帧上性能很差。请查看我的 apply() 进行提取/评分,如果您有任何可以加快速度的想法,请告诉我。
import pandas as pd
import numpy as np
import fuzzywuzzy as fw
创建一帧原始数据
dfRaw = pd.DataFrame({'City': {0: u'St Louis',
1: 'Omaha',
2: 'Chicogo',
3: 'Kansas city',
4: 'Des Moine'},
'State' : {0: 'MO', 1: 'NE', 2 : 'IL', 3 : 'MO', 4 : 'IA'}})
哪个产量
City State
0 St Louis MO
1 Omaha NE
2 Chicogo IL
3 Kansas city MO
4 Des Moine IA
然后是一个代表我们要查找的好数据的框架
dfLocations = pd.DataFrame({'City': {0: 'Saint Louis',
1: u'Omaha',
2: u'Chicago',
3: u'Kansas City',
4: u'Des Moines'},
'State' : {0: 'MO', 1: 'NE', 2 : 'IL',
3 : 'KS', 4 : 'IA'},
u'Zip': {0: '63201', 1: '68104', 2: '60290',
3: '68101', 4: '50301'}})
哪个产量
City State Zip
0 Saint Louis MO 63201
1 Omaha NE 68104
2 Chicago IL 60290
3 Kansas City KS 68101
4 Des Moines IA 50301
现在是 muzz 功能。编辑:添加了选项= right[match_col_name] 行并在应用中根据 Brenbarn 建议使用了选项。根据 Brenbarn 的建议,我还使用 extractOne() 运行了一些没有应用的测试,这似乎是瓶颈。也许有一种更快的方法来进行模糊匹配?
def muzz(left, right, on, match_col_name='match_on',score_col_name='score_match',
right_suffix='_match', score_cutoff=80):
right[match_col_name] = np.sum(right[on],axis=1)
choices= right[match_col_name]
###The offending statement###
left[[match_col_name,score_col_name]] =
pd.Series(np.sum(left[on],axis=1)).apply(lambda x : pd.Series(
fw.process.extractOne(x,choices,score_cutoff=score_cutoff)))
dfTemp = pd.merge(left,right,how='left',on=match_col_name,suffixes=('',right_suffix))
return dfTemp.drop(match_col_name, axis=1)
呼唤哑巴
muzz(dfRaw.copy(),dfLocations,on=['City','State'], score_cutoff=85)
哪个产量
City State score_match City_match State_match Zip
0 St Louis MO 87 Saint Louis MO 63201
1 Omaha NE 100 Omaha NE 68104
2 Chicogo IL 89 Chicago IL 60290
3 Kansas city MO NaN NaN NaN NaN
4 Des Moine IA 96 Des Moines IA 50301