// Function as parameter of a function
#include <iostream>
#include <cmath>
#include <cassert>
using namespace std;
const double PI = 4 * atan(1.0); // tan^(-1)(1) == pi/4 then 4*(pi/4)== pi
typedef double(*FD2D)(double);
double root(FD2D, double, double); //abscissae of 2-points,
//For the algorithm to work, the function must assume values of opposite sign in these two points, check
// at point 8
double polyn(double x) { return 3 - x*(1 + x*(27 - x * 9)); }
int main() {
double r;
cout.precision(15);
r = root(sin, 3, 4);
cout << "sin: " << r << endl
<< "exactly: " << PI << endl << endl;
r = root(cos, -2, -1.5);
cout << "cos: " << r << endl
<< "exactly: " << -PI/2 << endl << endl;
r = root(polyn, 0, 1);
cout << "polyn: " << r << endl
<< "exactly: " << 1./3 << endl << endl;
/*
we look for the root of the function equivalent to function polyn
but this time defined as a lambda function
*/
r = root([](double x) -> double {
return 3 - x*(1 + x*(27 - x * 9));
}, 0, 1);
cout << "lambda: " << r << endl
<< "exactly: " << 1. / 3 << endl << endl;
return 0;
}
// Finding root of function using bisection.
// fun(a) and fun(b) must be of opposite sign
double root(FD2D fun, double a, double b) {
static const double EPS = 1e-15; // 1×10^(-15)
double f, s, h = b - a, f1 = fun(a), f2 = fun(b);
if (f1 == 0) return a;
if (f2 == 0) return b;
assert(f1*f2<0); // 8.- macro assert from header cassert.
do {
if ((f = fun((s = (a + b) / 2))) == 0) break;
if (f1*f2 < 0) {
f2 = f;
b = s;
}
else {
f1 = f;
a = s;
}
} while ((h /= 2) > EPS);
return (a + b) / 2;
}
有人可以解释一下双根函数中的循环是如何工作的吗?我似乎没有 100% 理解,我在网上查了这个二分法并在纸上尝试,但我无法从这个例子中弄清楚。提前致谢!