我是 Spark 的新手,我用 Python 编写代码。
完全按照我的“学习 Spark”指南,我看到“你不需要安装 Hadoop 来运行 Spark”
然而,当我只是尝试使用 Pyspark 计算一个文件中的行数时,我收到以下错误。我错过了什么?
>>> lines = sc.textFile("README.md")
15/02/01 13:27:12 INFO MemoryStore: ensureFreeSpace(32728) called with curMem=0,
maxMem=278019440
15/02/01 13:27:12 INFO MemoryStore: Block broadcast_0 stored as values in memory
(estimated size 32.0 KB, free 265.1 MB)
>>> lines.count()
15/02/01 13:27:18 WARN NativeCodeLoader: Unable to load native-hadoop library fo
r your platform... using builtin-java classes where applicable
15/02/01 13:27:18 WARN LoadSnappy: Snappy native library not loaded
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "C:\Spark\spark-1.1.0-bin-hadoop1\python\pyspark\rdd.py", line 847, in co
unt
return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
File "C:\Spark\spark-1.1.0-bin-hadoop1\python\pyspark\rdd.py", line 838, in su
m
return self.mapPartitions(lambda x: [sum(x)]).reduce(operator.add)
File "C:\Spark\spark-1.1.0-bin-hadoop1\python\pyspark\rdd.py", line 759, in re
duce
vals = self.mapPartitions(func).collect()
File "C:\Spark\spark-1.1.0-bin-hadoop1\python\pyspark\rdd.py", line 723, in co
llect
bytesInJava = self._jrdd.collect().iterator()
File "C:\Spark\spark-1.1.0-bin-hadoop1\python\lib\py4j-0.8.2.1-src.zip\py4j\ja
va_gateway.py", line 538, in __call__
File "C:\Spark\spark-1.1.0-bin-hadoop1\python\lib\py4j-0.8.2.1-src.zip\py4j\pr
otocol.py", line 300, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o26.collect.
: org.apache.hadoop.mapred.InvalidInputException: Input path does not exist: fil
e:/C:/Spark/spark-1.1.0-bin-hadoop1/bin/README.md
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.j
ava:197)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.ja
va:208)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:179)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:204)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:202)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:202)
at org.apache.spark.rdd.MappedRDD.getPartitions(MappedRDD.scala:28)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:204)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:202)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:202)
at org.apache.spark.api.python.PythonRDD.getPartitions(PythonRDD.scala:5
6)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:204)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:202)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:202)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1135)
at org.apache.spark.rdd.RDD.collect(RDD.scala:774)
at org.apache.spark.api.java.JavaRDDLike$class.collect(JavaRDDLike.scala
:305)
at org.apache.spark.api.java.JavaRDD.collect(JavaRDD.scala:32)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:379)
at py4j.Gateway.invoke(Gateway.java:259)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:207)
at java.lang.Thread.run(Unknown Source)
>>> lines.first()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "C:\Spark\spark-1.1.0-bin-hadoop1\python\pyspark\rdd.py", line 1167, in f
irst
return self.take(1)[0]
File "C:\Spark\spark-1.1.0-bin-hadoop1\python\pyspark\rdd.py", line 1126, in t
ake
totalParts = self._jrdd.partitions().size()
File "C:\Spark\spark-1.1.0-bin-hadoop1\python\lib\py4j-0.8.2.1-src.zip\py4j\ja
va_gateway.py", line 538, in __call__
File "C:\Spark\spark-1.1.0-bin-hadoop1\python\lib\py4j-0.8.2.1-src.zip\py4j\pr
otocol.py", line 300, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o20.partitions.
: org.apache.hadoop.mapred.InvalidInputException: Input path does not exist: fil
e:/C:/Spark/spark-1.1.0-bin-hadoop1/bin/README.md
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.j
ava:197)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.ja
va:208)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:179)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:204)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:202)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:202)
at org.apache.spark.rdd.MappedRDD.getPartitions(MappedRDD.scala:28)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:204)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:202)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:202)
at org.apache.spark.api.java.JavaRDDLike$class.partitions(JavaRDDLike.sc
ala:50)
at org.apache.spark.api.java.JavaRDD.partitions(JavaRDD.scala:32)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:379)
at py4j.Gateway.invoke(Gateway.java:259)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:207)
at java.lang.Thread.run(Unknown Source)
>>>