6

我有一个关于在访问 Spark RDD 时在闭包中使用局部变量的问题。我想解决的问题如下:

我有一个应该读入 RDD 的文本文件列表。但是,首先我需要向从单个文本文件创建的 RDD 添加其他信息。此附加信息是从文件名中提取的。然后,使用 union() 将 RDD 放入一个大 RDD。

from pyspark import SparkConf, SparkContext
spark_conf = SparkConf().setAppName("SparkTest")
spark_context = SparkContext(conf=spark_conf)

list_of_filenames = ['file_from_Ernie.txt', 'file_from_Bert.txt']
rdd_list = []
for filename in list_of_filenames:
    tmp_rdd = spark_context.textFile(filename)
    # extract_file_info('file_from_Owner.txt') == 'Owner'
    file_owner = extract_file_info(filename)   
    tmp_rdd = tmp_rdd.map(lambda x : (x, file_owner))
    rdd_list.append(tmp_rdd)
overall_content_rdd = spark_context.union(rdd_list)
# ...do something...
overall_content_rdd.collect()
# However, this does not work: 
# The result is that always Bert will be the owner, i.e., never Ernie.

问题是循环中的 map() 函数没有引用“正确的”file_owner。相反,它将引用 file_owner 的最新值。在我的本地机器上,我设法通过为每个 RDD 调用 cache() 函数来解决这个问题:

# ..
tmp_rdd = tmp_rdd.map(lambda x : (x, file_owner))
tmp_rdd.cache()
# ..

我的问题:使用 cache() 是解决我问题的正确方法吗?有没有其他选择?

非常感谢!

4

4 回答 4

3

这不是 Spark 现象,而是普通的 Python 现象。

>>> fns = []
>>> for i in range(3):
...   fns.append(lambda: i)
... 
>>> for fn in fns:
...   print fn()
... 
2
2
2

避免它的一种方法是声明具有默认参数的函数。默认值在声明时进行评估。

>>> fns = []
>>> for i in range(3):
...   def f(i=i):
...     return i
...   fns.append(f)
... 
>>> for fn in fns:
...   print fn()
... 
0
1
2

这出现了很多,请参阅这些其他问题:

于 2015-01-29T15:16:26.053 回答
1

因此,您正在执行的 cache() 方法不一定在 100% 的时间内有效,前提是没有节点失败并且不需要重新计算分区。一个简单的解决方案是创建一个“捕获”file_owner 值的函数。这是一个潜在解决方案的 pyspark shell 中的快速小插图:

Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 1.2.0-SNAPSHOT
      /_/

Using Python version 2.7.6 (default, Mar 22 2014 22:59:56)
SparkContext available as sc.
>>> hi = "hi"
>>> sc.parallelize(["panda"])
ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:365
>>> r = sc.parallelize(["panda"])
>>> meeps = r.map(lambda x : x + hi)
>>> hi = "by"
>>> meeps.collect()
['pandaby']
>>> hi = "hi"
>>> def makeGreetFunction(param):
...     return (lambda x: x + param)
... 
>>> f = makeGreetFunction(hi)
>>> hi="by"
>>> meeps = r.map(f)
>>> meeps.collect()
['pandahi']
>>> 
于 2015-01-29T00:15:03.507 回答
0

您可以创建一个文件所有者数组并在地图转换中使用它:

file_owner[i] = extract_file_info(filename)
tmp_rdd = tmp_rdd.map(lambda x : (x, file_owner[i]))
于 2015-01-29T08:00:26.633 回答
0

正如其他人解释的那样,您的 lambda 函数的问题在于它将file_owner在执行时进行评估。要在 for 循环的迭代期间强制其评估,您必须创建并执行构造函数。以下是使用 lambda 的方法:

# ...
file_owner = extract_file_info(filename)   
tmp_rdd = tmp_rdd.map((lambda owner: lambda line: (line,owner))(file_owner))
# ...
于 2015-02-04T18:07:42.547 回答