3

我正在尝试使用cusolverDnSgesvdCUDA 7.0 的新例程来计算奇异值。完整代码报告如下:

#include "cuda_runtime.h"
#include "device_launch_parameters.h"

#include <stdio.h>

#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include <cusolverDn.h>
#include <cuda_runtime_api.h>

/***********************/
/* CUDA ERROR CHECKING */
/***********************/
void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
   if (code != cudaSuccess)
   {
      fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
      if (abort) { exit(code); }
   }
}
void gpuErrchk(cudaError_t ans) { gpuAssert((ans), __FILE__, __LINE__); }

/********/
/* MAIN */
/********/
int main(){

    int M = 10;
    int N = 10;

    // --- Setting the host matrix
    float *h_A = (float *)malloc(M * N * sizeof(float));
    for(unsigned int i = 0; i < M; i++){
        for(unsigned int j = 0; j < N; j++){
            h_A[j*M + i] = (i + j) * (i + j);
        }
    }

    // --- Setting the device matrix and moving the host matrix to the device
    float *d_A;         gpuErrchk(cudaMalloc(&d_A,      M * N * sizeof(float)));
    gpuErrchk(cudaMemcpy(d_A, h_A, M * N * sizeof(float), cudaMemcpyHostToDevice));

    // --- host side SVD results space
    float *h_U = (float *)malloc(M * M * sizeof(float));
    float *h_V = (float *)malloc(N * N * sizeof(float));
    float *h_S = (float *)malloc(N *     sizeof(float));

    // --- device side SVD workspace and matrices
    int work_size = 0;

    int *devInfo;       gpuErrchk(cudaMalloc(&devInfo,          sizeof(int)));
    float *d_U;         gpuErrchk(cudaMalloc(&d_U,      M * M * sizeof(float)));
    float *d_V;         gpuErrchk(cudaMalloc(&d_V,      N * N * sizeof(float)));
    float *d_S;         gpuErrchk(cudaMalloc(&d_S,      N *     sizeof(float)));

    cusolverStatus_t stat;

    // --- CUDA solver initialization
    cusolverDnHandle_t solver_handle;
    cusolverDnCreate(&solver_handle);

    stat = cusolverDnSgesvd_bufferSize(solver_handle, M, N, &work_size);
    if(stat != CUSOLVER_STATUS_SUCCESS ) std::cout << "Initialization of cuSolver failed. \N";

    float *work;    gpuErrchk(cudaMalloc(&work, work_size * sizeof(float)));
    //float *rwork; gpuErrchk(cudaMalloc(&rwork, work_size * sizeof(float)));

    // --- CUDA SVD execution
    //stat = cusolverDnSgesvd(solver_handle, 'A', 'A', M, N, d_A, M, d_S, d_U, M, d_V, N, work, work_size, NULL, devInfo);
    stat = cusolverDnSgesvd(solver_handle, 'N', 'N', M, N, d_A, M, d_S, d_U, M, d_V, N, work, work_size, NULL, devInfo);
    cudaDeviceSynchronize();

    int devInfo_h = 0;
    gpuErrchk(cudaMemcpy(&devInfo_h, devInfo, sizeof(int), cudaMemcpyDeviceToHost));
    std::cout << "devInfo = " << devInfo_h << "\n";

    switch(stat){
        case CUSOLVER_STATUS_SUCCESS:           std::cout << "SVD computation success\n";                       break;
        case CUSOLVER_STATUS_NOT_INITIALIZED:   std::cout << "Library cuSolver not initialized correctly\n";    break;
        case CUSOLVER_STATUS_INVALID_VALUE:     std::cout << "Invalid parameters passed\n";                     break;
        case CUSOLVER_STATUS_INTERNAL_ERROR:    std::cout << "Internal operation failed\n";                     break;
    }

    if (devInfo_h == 0 && stat == CUSOLVER_STATUS_SUCCESS) std::cout    << "SVD successful\n\n";

    // --- Moving the results from device to host
    gpuErrchk(cudaMemcpy(h_S, d_S, N * sizeof(float), cudaMemcpyDeviceToHost));

    for(int i = 0; i < N; i++) std::cout << "d_S["<<i<<"] = " << h_S[i] << std::endl;

    cusolverDnDestroy(solver_handle);

    return 0;

}

如果我要求计算完整的 SVD(用jobu = 'A'and注释行jobvt = 'A'),一切正常。如果我只要求计算奇异值(与jobu = 'N'和一致jobvt = 'N'),则cusolverDnSgesvd返回

CUSOLVER_STATUS_INVALID_VALUE

请注意,在这种情况下devInfo = 0,我无法发现无效参数。

另请注意,文档 PDF 缺少有关rwork参数的信息,因此我将其作为虚拟参数处理。

4

2 回答 2

1

此时 cuSolvergesvd函数只支持jobu = 'A'jobvt = 'A'

因此,当您指定其他组合时会出现错误。从文档中:

备注 2:gesvd 仅支持 jobu='A' 和 jobvt='A' 并返回矩阵 U 和 VH

于 2015-03-22T15:26:15.240 回答
1

用于cusolver<T>nSgesvd

正如 lebedov 所说,从 CUDA 8.0 开始,现在只能通过cusolverDnSgesvd. 我在下面报告了您的代码的一个稍微修改的版本,其中有两个调用cusolverDnSgesvd,一个只执行奇异值计算

cusolverDnSgesvd(solver_handle, 'N', 'N', M, N, d_A, M, d_S, NULL, M, NULL, N, work, work_size, NULL, devInfo)

一个执行完整的 SVD 计算

cusolverDnSgesvd(solver_handle, 'A', 'A', M, N, d_A, M, d_S, d_U, M, d_V, N, work, work_size, NULL, devInfo)

正如您已经说过的,'A'完整 SVD 案例的两个字段已更改为'N'仅奇异值案例。请注意,仅在奇异值的情况下,不需要为奇异向量矩阵U和存储空间V。实际上,NULL传递了一个指针。

仅奇异值计算比完整的 SVD 计算快。在 GTX 960 上,对于1000x1000矩阵,时间如下:

Singular values only: 559 ms
Full SVD: 2239 ms

这是完整的代码:

#include "cuda_runtime.h"
#include "device_launch_parameters.h"

#include <stdio.h>

#include<iostream>
#include<stdlib.h>
#include<stdio.h>

#include <cusolverDn.h>
#include <cuda_runtime_api.h>

#include "Utilities.cuh"
#include "TimingGPU.cuh"

/********/
/* MAIN */
/********/
int main(){

    int M = 1000;
    int N = 1000;

    TimingGPU timerGPU;
    float     elapsedTime;

    // --- Setting the host matrix
    float *h_A = (float *)malloc(M * N * sizeof(float));
    for (unsigned int i = 0; i < M; i++){
        for (unsigned int j = 0; j < N; j++){
            h_A[j*M + i] = (i + j) * (i + j);
        }
    }

    // --- Setting the device matrix and moving the host matrix to the device
    float *d_A;         gpuErrchk(cudaMalloc(&d_A, M * N * sizeof(float)));
    gpuErrchk(cudaMemcpy(d_A, h_A, M * N * sizeof(float), cudaMemcpyHostToDevice));

    // --- host side SVD results space
    float *h_U = (float *)malloc(M * M * sizeof(float));
    float *h_V = (float *)malloc(N * N * sizeof(float));
    float *h_S = (float *)malloc(N *     sizeof(float));

    // --- device side SVD workspace and matrices
    int work_size = 0;

    int *devInfo;       gpuErrchk(cudaMalloc(&devInfo, sizeof(int)));
    float *d_U;         gpuErrchk(cudaMalloc(&d_U, M * M * sizeof(float)));
    float *d_V;         gpuErrchk(cudaMalloc(&d_V, N * N * sizeof(float)));
    float *d_S;         gpuErrchk(cudaMalloc(&d_S, N *     sizeof(float)));

    cusolverStatus_t stat;

    // --- CUDA solver initialization
    cusolverDnHandle_t solver_handle;
    cusolveSafeCall(cusolverDnCreate(&solver_handle));

    cusolveSafeCall(cusolverDnSgesvd_bufferSize(solver_handle, M, N, &work_size));

    float *work;    gpuErrchk(cudaMalloc(&work, work_size * sizeof(float)));

    // --- CUDA SVD execution - Singular values only
    timerGPU.StartCounter();
    cusolveSafeCall(cusolverDnSgesvd(solver_handle, 'N', 'N', M, N, d_A, M, d_S, NULL, M, NULL, N, work, work_size, NULL, devInfo));
    elapsedTime = timerGPU.GetCounter();

    int devInfo_h = 0;
    gpuErrchk(cudaMemcpy(&devInfo_h, devInfo, sizeof(int), cudaMemcpyDeviceToHost));
    if (devInfo_h == 0)
        printf("SVD successfull for the singular values calculation only\n\n");
    else if (devInfo_h < 0)
        printf("SVD unsuccessfull for the singular values calculation only. Parameter %i is wrong\n", -devInfo_h);
    else
        printf("SVD unsuccessfull for the singular values calculation only. A number of %i superdiagonals of an intermediate bidiagonal form did not converge to zero\n", devInfo_h);

    printf("Calculation of the singular values only: %f ms\n\n", elapsedTime);

    // --- Moving the results from device to host
    //gpuErrchk(cudaMemcpy(h_S, d_S, N * sizeof(float), cudaMemcpyDeviceToHost));
    //for (int i = 0; i < N; i++) std::cout << "d_S[" << i << "] = " << h_S[i] << std::endl;

    // --- CUDA SVD execution - Full SVD
    timerGPU.StartCounter();
    cusolveSafeCall(cusolverDnSgesvd(solver_handle, 'A', 'A', M, N, d_A, M, d_S, d_U, M, d_V, N, work, work_size, NULL, devInfo));
    elapsedTime = timerGPU.GetCounter();

    devInfo_h = 0;
    gpuErrchk(cudaMemcpy(&devInfo_h, devInfo, sizeof(int), cudaMemcpyDeviceToHost));
    if (devInfo_h == 0)
        printf("SVD successfull for the full SVD calculation\n\n");
    else if (devInfo_h < 0)
        printf("SVD unsuccessfull for the full SVD calculation. Parameter %i is wrong\n", -devInfo_h);
    else
        printf("SVD unsuccessfull for the full SVD calculation. A number of %i superdiagonals of an intermediate bidiagonal form did not converge to zero\n", devInfo_h);

    printf("Calculation of the full SVD calculation: %f ms\n\n", elapsedTime);

    cusolveSafeCall(cusolverDnDestroy(solver_handle));

    return 0;

}

编辑 - 跨不同版本的 CUDA 的性能

我比较了矩阵的CUDA 8.0CUDA 9.1和的仅奇异值计算和全 SVD 计算的性能。这是 GTX 960 上的结果。CUDA 10.05000x5000

Computation type               CUDA 8.0     CUDA 9.1     CUDA 10.0     
__________________________________________________________________

Singular values only           17s          15s          15s
Full SVD                       161s         159s         457s
__________________________________________________________________
于 2017-01-20T11:45:21.807 回答