5

您可能知道,OpenCV 3 中发生了许多变化。在以前的 OpenCV 版本中,我曾经这样做过:

Mat trainData(classes * samples, ImageSize, CV_32FC1);
Mat trainClasses(classes * samples, 1, CV_32FC1);
KNNLearning(&trainData, &trainClasses); //learning function
KNearest knearest(trainData, trainClasses); //creating

//loading input image
Mat input = imread("input.jpg");

//digital recognition
learningTest(input, knearest);//test

我还找到了一个如何弄清楚的例子,但我在创建函数中仍然有错误:

Ptr<KNearest> knearestKdt = KNearest::create(ml::KNearest::Params(10, true, INT_MAX, ml::KNearest::KDTREE));
knearestKdt->train(trainData, ml::ROW_SAMPLE, trainLabels);
knearestKdt->findNearest(testData, 4, bestLabels);

您能否提供信息,如何正确地将 KNearest 的实际代码重写为 openCV 3?

4

2 回答 2

8

自从@aperture-laboratories 回答以来,API 再次发生了变化。我希望他们在将来发布新功能或更改时跟上文档。

一个工作示例如下

using namespace cv::ml;

//Be sure to change number_of_... to fit your data!
Mat matTrainFeatures(0,number_of_train_elements,CV_32F);
Mat matSample(0,number_of_sample_elements,CV_32F);

Mat matTrainLabels(0,number_of_train_elements,CV_32F);
Mat matSampleLabels(0,number_of_sample_elements,CV_32F);

Mat matResults(0,0,CV_32F);

//etcetera code for loading data into Mat variables suppressed

Ptr<TrainData> trainingData;
Ptr<KNearest> kclassifier=KNearest::create();

trainingData=TrainData::create(matTrainFeatures,
                        SampleTypes::ROW_SAMPLE,matTrainLabels);



kclassifier->setIsClassifier(true);
kclassifier->setAlgorithmType(KNearest::Types::BRUTE_FORCE);
kclassifier->setDefaultK(1);

kclassifier->train(trainingData);
kclassifier->findNearest(matSample,kclassifier->getDefaultK(),matResults);

//Just checking the settings
cout<<"Training data: "<<endl
    <<"getNSamples\t"<<trainingData->getNSamples()<<endl
    <<"getSamples\n"<<trainingData->getSamples()<<endl
    <<endl;

cout<<"Classifier :"<<endl
    <<"kclassifier->getDefaultK(): "<<kclassifier->getDefaultK()<<endl
    <<"kclassifier->getIsClassifier()   : "<<kclassifier->getIsClassifier()<<endl   
    <<"kclassifier->getAlgorithmType(): "<<kclassifier->getAlgorithmType()<<endl
    <<endl;

//confirming sample order
cout<<"matSample: "<<endl
    <<matSample<<endl
    <<endl;

//displaying the results
cout<<"matResults: "<<endl
    <<matResults<<endl
    <<endl;

//etcetera ending for main function
于 2015-06-22T18:42:31.367 回答
0
KNearest::Params params;
params.defaultK=5;
params.isclassifier=true;
    //////// Train and find with knearest
        Ptr<TrainData> knn;
        knn= TrainData::create(AmatOfFeatures,ROW_SAMPLE,AmatOfLabels);
        Ptr<KNearest> knn1;
        knn1=StatModel::train<KNearest>(knn,params);
        knn1->findNearest(AmatOfFeaturesToTest,4,ResultMatOfNearestNeighbours);
        /////////////////

这些函数的名称将帮助您在文档中找到它们。但是,在完全更新之前,文档可能会有点混乱,所以最好的方法是做一个小玩具示例并使用试错法。这是一个工作示例,直接从我自己的代码中粘贴出来,被证明是有效的。希望有帮助。

于 2015-02-19T09:16:05.533 回答