我正在尝试w(t)
从一些数据创建一个函数。我通过循环数据、创建函数并将其添加到w(t)
. 我遇到了无限递归问题,因为我不知道 R 何时评估变量。我得到的错误信息是:
错误:评估嵌套太深:无限递归/选项(表达式=)?总结期间出错:评估嵌套太深:无限递归/选项(表达式=)?
下面是一个内核化感知器的示例。我生成了一些线性可分的数据并尝试拟合它。函数加法发生在函数kern.perceptron
中,其中 I:
- 从数据创建一个函数:
kernel <- FUN(x, ...)
. 从调用这转化为创建一个function(t) (x %*% t)^3
应该评估x 的函数。(我认为这是我可能会摔倒的地方)。 - 将此函数添加/减去现有函数
wHat
我怎样才能正确地更新函数这样wHat(t) = wHat(t) + kernel(t)
?
prepend.bias <- function(X){
cbind(rep(1, nrow(X)), X)
}
pred.perc <- function(X, w, add.bias=FALSE){
X <- as.matrix(X)
if (add.bias) X <- prepend.bias(X)
sign(X %*% w)
}
polyKernel <- function(x, d=2){
# Function that creates a kernel function for a given data point
# Expects data point as row matrix
function(t){
# expects t as vector or col matrix
t <- as.matrix(t)
(x %*% t)^d
}
}
pred.kperc <- function(X, w, add.bias=FALSE){
X <- as.matrix(X)
if (add.bias) X <- prepend.bias(X)
as.matrix(sign(apply(X, 1, w)))
}
kern.perceptron <- function(X, Y, max.epoch=1, verbose=FALSE,
FUN=polyKernel, ...) {
wHat <- function(t) 0
alpha <- numeric(0)
X <- prepend.bias(X)
bestmistakes <- Inf
n <- nrow(X)
for (epoch in 1:max.epoch) {
improved <- FALSE
mistakes <- 0
for (i in 1:n) {
x <- X[i,,drop=F]
yHat <- pred.kperc(x, wHat)
if (Y[i] != yHat) {
alpha <- c(alpha, Y[i])
wPrev <- wHat
kernel <- FUN(x, ...)
if (Y[i] == -1){
wHat <- function(t) wPrev(t) - kernel(t)
} else{
wHat <- function(t) wPrev(t) + kernel(t)
}
mistakes <- mistakes + 1
}
else alpha <- c(alpha, 0)
}
totmistakes <- sum(Y != pred.kperc(X, wHat))
if (totmistakes < bestmistakes){
bestmistakes <- totmistakes
pocket <- wHat
improved <- TRUE
}
if (verbose) {
message(paste("\nEpoch:", epoch, "\nMistakes In Loop:", mistakes,
"\nCurrent Solution Mistakes:", totmistakes,
"\nBest Solution Mistakes:", bestmistakes))
if (!improved)
message(paste("WARNING: Epoch", epoch, "No improvement"))
}
}
return(pocket)
}
set.seed(10230)
w <- c(0.3, 0.9, -2)
X <- gendata(100, 2)
Y <- pred.perc(X, w, TRUE)
wHat <- kern.perceptron(X, Y, 10, TRUE, polyKernel, d=3)