我正在尝试通过使用 NN 和 CNN 对自己和几个朋友编写的手写数字进行分类。为了训练 NN,使用了 MNIST 数据集。问题是使用 MNIST 数据集训练的 NN 在我的数据集上没有给出令人满意的测试结果。我在 Python 和 MATLAB 上使用了一些具有不同设置的库,如下所示。
在 Python 上,我使用此代码进行设置;
- 3 层神经网络,输入数 = 784,隐藏神经元数 = 30,输出数 = 10
- 成本函数 = 交叉熵
- 时期数 = 30
- 批量大小 = 10
- 学习率 = 0.5
用MNIST训练集训练,测试结果如下:
MNIST 上的测试结果 = 96% 我自己的数据集上的测试结果 = 80%
在 MATLAB 上,我使用了具有各种设置的深度学习工具箱,包括归一化,与上述类似,NN 的最佳精度约为 75%。在 MATLAB 上使用了 NN 和 CNN。
我试图将我自己的数据集与 MNIST 相似。以上结果从预处理数据集中收集。这是应用于我的数据集的预处理:
- 每个数字被单独裁剪并通过使用双三次插值调整为 28 x 28
- 通过在 MATLAB 上使用边界框,路径以 MNIST 中的平均值为中心
- 背景为 0,最高像素值为 1,如 MNIST
我不知道该怎么做更多。对比度等仍然存在一些差异,但对比度增强试验无法提高准确性。
这是来自 MNIST 和我自己的数据集的一些数字,用于直观地比较它们。
如您所见,存在明显的对比度差异。我认为准确性问题是因为 MNIST 和我自己的数据集之间缺乏相似性。我该如何处理这个问题?
这里有一个类似的问题,但他的数据集是打印数字的集合,不像我的。
编辑:我还在使用二值化 MNIST 和默认 MNIST 训练的 NN 上测试了我自己的数据集的二值化版本。二值化阈值为 0.05。
这是分别来自 MNIST 数据集和我自己的数据集的矩阵形式的示例图像。两人都是5。
MNIST:
Columns 1 through 10
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.1176 0.1412
0 0 0 0 0 0 0 0.1922 0.9333 0.9922
0 0 0 0 0 0 0 0.0706 0.8588 0.9922
0 0 0 0 0 0 0 0 0.3137 0.6118
0 0 0 0 0 0 0 0 0 0.0549
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.0902 0.2588
0 0 0 0 0 0 0.0706 0.6706 0.8588 0.9922
0 0 0 0 0.2157 0.6745 0.8863 0.9922 0.9922 0.9922
0 0 0 0 0.5333 0.9922 0.9922 0.9922 0.8314 0.5294
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
Columns 11 through 20
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0.0118 0.0706 0.0706 0.0706 0.4941 0.5333 0.6863 0.1020
0.3686 0.6039 0.6667 0.9922 0.9922 0.9922 0.9922 0.9922 0.8824 0.6745
0.9922 0.9922 0.9922 0.9922 0.9922 0.9922 0.9922 0.9843 0.3647 0.3216
0.9922 0.9922 0.9922 0.9922 0.7765 0.7137 0.9686 0.9451 0 0
0.4196 0.9922 0.9922 0.8039 0.0431 0 0.1686 0.6039 0 0
0.0039 0.6039 0.9922 0.3529 0 0 0 0 0 0
0 0.5451 0.9922 0.7451 0.0078 0 0 0 0 0
0 0.0431 0.7451 0.9922 0.2745 0 0 0 0 0
0 0 0.1373 0.9451 0.8824 0.6275 0.4235 0.0039 0 0
0 0 0 0.3176 0.9412 0.9922 0.9922 0.4667 0.0980 0
0 0 0 0 0.1765 0.7294 0.9922 0.9922 0.5882 0.1059
0 0 0 0 0 0.0627 0.3647 0.9882 0.9922 0.7333
0 0 0 0 0 0 0 0.9765 0.9922 0.9765
0 0 0 0 0.1804 0.5098 0.7176 0.9922 0.9922 0.8118
0 0 0.1529 0.5804 0.8980 0.9922 0.9922 0.9922 0.9804 0.7137
0.0941 0.4471 0.8667 0.9922 0.9922 0.9922 0.9922 0.7882 0.3059 0
0.8353 0.9922 0.9922 0.9922 0.9922 0.7765 0.3176 0.0078 0 0
0.9922 0.9922 0.9922 0.7647 0.3137 0.0353 0 0 0 0
0.9922 0.9569 0.5216 0.0431 0 0 0 0 0 0
0.5176 0.0627 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
Columns 21 through 28
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0.6510 1.0000 0.9686 0.4980 0 0 0 0
0.9922 0.9490 0.7647 0.2510 0 0 0 0
0.3216 0.2196 0.1529 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0.2510 0 0 0 0 0 0 0
0.0078 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
我自己的数据集:
Columns 1 through 10
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.4000 0.5569
0 0 0 0 0 0 0 0 0.9961 0.9922
0 0 0 0 0 0 0 0 0.6745 0.9882
0 0 0 0 0 0 0 0 0.0824 0.8745
0 0 0 0 0 0 0 0 0 0.4784
0 0 0 0 0 0 0 0 0 0.4824
0 0 0 0 0 0 0 0 0.0824 0.8745
0 0 0 0 0 0 0 0.0824 0.8392 0.9922
0 0 0 0 0 0 0 0.2392 0.9922 0.6706
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.4431 0.3608
0 0 0 0 0 0 0 0.3216 0.9922 0.5922
0 0 0 0 0 0 0 0.3216 1.0000 0.9922
0 0 0 0 0 0 0 0 0.2784 0.5922
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
Columns 11 through 20
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0.2000 0.5176 0.8392 0.9922 0.9961 0.9922 0.7961 0.6353
0.7961 0.7961 0.9922 0.9882 0.9922 0.9882 0.5922 0.2745 0 0
0.9569 0.7961 0.5569 0.4000 0.3216 0 0 0 0 0
0.7961 0 0 0 0 0 0 0 0 0
0.9176 0.1176 0 0 0 0 0 0 0 0
0.9922 0.1961 0 0 0 0 0 0 0 0
0.9961 0.3569 0.2000 0.2000 0.2000 0.0392 0 0 0 0
0.9922 0.9882 0.9922 0.9882 0.9922 0.6745 0.3216 0 0 0
0.7961 0.6353 0.4000 0.4000 0.7961 0.8745 0.9961 0.9922 0.2000 0.0392
0 0 0 0 0 0.0784 0.4392 0.7529 0.9922 0.8314
0 0 0 0 0 0 0 0 0.4000 0.7961
0 0 0 0 0 0 0 0 0 0.0784
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.0824 0.4000 0.4000 0.7176
0.9176 0.5961 0.6000 0.7569 0.6784 0.9922 0.9961 0.9922 0.9961 0.8353
0.5922 0.9098 0.9922 0.8314 0.7529 0.5922 0.5137 0.1961 0.1961 0.0392
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
Columns 21 through 28
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0.1608 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0.1608 0 0 0 0 0 0 0
0.9176 0.2000 0 0 0 0 0 0
0.8353 0.9098 0.3216 0 0 0 0 0
0.2431 0.7961 0.9176 0.4392 0 0 0 0
0 0.0784 0.8353 0.9882 0 0 0 0
0 0 0.6000 0.9922 0 0 0 0
0 0.1608 0.9137 0.8314 0 0 0 0
0.1216 0.6784 0.9569 0.1569 0 0 0 0
0.9137 0.8314 0.3176 0 0 0 0 0
0.5569 0.0784 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0