4

我们很快将着手开发新的移动应用程序。这个特定的应用程序将用于大量搜索基于文本的字段。整个小组对哪种数据库引擎最适合在移动平台上进行这些类型的搜索有什么建议吗?

具体包括 Windows Mobile 6,我们将使用 .Net CF。此外,一些基于文本的字段将介于 35 到 500 个字符之间。该设备将以两种不同的方法运行,批处理和 WiFi。当然,对于 WiFi,我们可以将请求提交给一个成熟的数据库引擎,然后再取回结果。这个问题围绕“批处理”版本展开,该版本将包含一个数据库,其中包含有关设备闪存/可移动存储卡的信息。

无论如何,我知道 SQLCE 有一些基本的索引,但是在您获得完整的版本之前,您不会进入真正花哨的“全文”样式索引,而这在移动平台上当然是不可用的。

数据的外观示例:

“围裙木匠可调节皮革容器口袋腰部五金腰带”等等等。

我还没有对任何其他具体选项进行评估,因为我认为我会利用这个小组的经验来首先为我指明一些具体的途径。

有什么建议/提示吗?

4

2 回答 2

5

就在最近我遇到了同样的问题。这是我所做的:

我创建了一个类来保存每个对象的 id 和文本(在我的例子中,我称之为 sku(项目编号)和描述)。这会创建一个使用较少内存的较小对象,因为它仅用于搜索。找到匹配项后,我仍然会从数据库中获取完整的对象。

public class SmallItem
{
    private int _sku;
    public int Sku
    {
        get { return _sku; }
        set { _sku = value; }
    }

    // Size of max description size + 1 for null terminator.
    private char[] _description = new char[36];
    public char[] Description
    {
        get { return _description; }
        set { _description = value; }
    }

    public SmallItem()
    {
    }
}

创建此类后,您可以创建这些对象的数组(在我的例子中我实际上使用了 List),并使用它在整个应用程序中进行搜索。此列表的初始化需要一些时间,但您只需要在启动时担心这一点。基本上只需在您的数据库上运行查询并获取创建此列表所需的数据。

获得列表后,您可以快速浏览它以搜索您想要的任何单词。由于它是一个包含,它还必须在单词中查找单词(例如,drill 将返回钻头、钻头、钻头等)。为此,我们编写了一个本地开发的非托管 c# contains 函数。它接受一个单词的字符串数组(因此您可以搜索多个单词...我们将其用于“AND”搜索...描述必须包含传入的所有单词...“OR”目前不支持在这个例子中)。当它搜索单词列表时,它会构建一个 ID 列表,然后将其传递回调用函数。获得 ID 列表后,您可以轻松地在数据库中运行快速查询,以根据快速索引 ID 号返回完整的对象。我应该提一下,我们还限制了返回结果的最大数量。这个可以取出来。如果有人输入“e”之类的东西作为他们的搜索词,这很方便。这将返回很多结果。

这是自定义 Contains 函数的示例:

public static int[] Contains(string[] descriptionTerms, int maxResults, List<SmallItem> itemList)
{
    // Don't allow more than the maximum allowable results constant.            
    int[] matchingSkus = new int[maxResults];

    // Indexes and counters.
    int matchNumber = 0;
    int currentWord = 0;
    int totalWords = descriptionTerms.Count() - 1;  // - 1 because it will be used with 0 based array indexes

    bool matchedWord;

    try
    {   
        /* Character array of character arrays. Each array is a word we want to match.
         * We need the + 1 because totalWords had - 1 (We are setting a size/length here,
         * so it is not 0 based... we used - 1 on totalWords because it is used for 0
         * based index referencing.)
         * */
        char[][] allWordsToMatch = new char[totalWords + 1][];

        // Character array to hold the current word to match. 
        char[] wordToMatch = new char[36]; // Max allowable word size + null terminator... I just picked 36 to be consistent with max description size.

        // Loop through the original string array or words to match and create the character arrays. 
        for (currentWord = 0; currentWord <= totalWords; currentWord++)
        {
            char[] desc = new char[descriptionTerms[currentWord].Length + 1];
            Array.Copy(descriptionTerms[currentWord].ToUpper().ToCharArray(), desc, descriptionTerms[currentWord].Length);
            allWordsToMatch[currentWord] = desc;
        }

        // Offsets for description and filter(word to match) pointers.
        int descriptionOffset = 0, filterOffset = 0;

        // Loop through the list of items trying to find matching words.
        foreach (SmallItem i in itemList)
        {
            // If we have reached our maximum allowable matches, we should stop searching and just return the results.
            if (matchNumber == maxResults)
                break;

            // Loop through the "words to match" filter list.
            for (currentWord = 0; currentWord <= totalWords; currentWord++)
            {
                // Reset our match flag and current word to match.
                matchedWord = false;
                wordToMatch = allWordsToMatch[currentWord];

                // Delving into unmanaged code for SCREAMING performance ;)
                unsafe
                {
                    // Pointer to the description of the current item on the list (starting at first char).
                    fixed (char* pdesc = &i.Description[0])
                    {
                        // Pointer to the current word we are trying to match (starting at first char).
                        fixed (char* pfilter = &wordToMatch[0])
                        {
                            // Reset the description offset.
                            descriptionOffset = 0;

                            // Continue our search on the current word until we hit a null terminator for the char array.
                            while (*(pdesc + descriptionOffset) != '\0')
                            {
                                // We've matched the first character of the word we're trying to match.
                                if (*(pdesc + descriptionOffset) == *pfilter)
                                {
                                    // Reset the filter offset.
                                            filterOffset = 0;

                                    /* Keep moving the offsets together while we have consecutive character matches. Once we hit a non-match
                                     * or a null terminator, we need to jump out of this loop.
                                     * */
                                    while (*(pfilter + filterOffset) != '\0' && *(pfilter + filterOffset) == *(pdesc + descriptionOffset))
                                    {
                                        // Increase the offsets together to the next character.
                                        ++filterOffset;
                                        ++descriptionOffset;
                                    }

                                    // We hit matches all the way to the null terminator. The entire word was a match.
                                    if (*(pfilter + filterOffset) == '\0')
                                    {
                                        // If our current word matched is the last word on the match list, we have matched all words.
                                        if (currentWord == totalWords)
                                        {
                                            // Add the sku as a match.
                                            matchingSkus[matchNumber] = i.Sku.ToString();
                                            matchNumber++;

                                            /* Break out of this item description. We have matched all needed words and can move to
                                             * the next item.
                                             * */
                                            break;
                                        }

                                        /* We've matched a word, but still have more words left in our list of words to match.
                                         * Set our match flag to true, which will mean we continue continue to search for the
                                         * next word on the list.
                                         * */
                                         matchedWord = true;
                                    }
                                }

                                // No match on the current character. Move to next one.
                                descriptionOffset++;
                            }

                            /* The current word had no match, so no sense in looking for the rest of the words. Break to the
                             * next item description.
                             * */
                             if (!matchedWord)
                                break;
                        }
                    }
                }
            }
        };

        // We have our list of matching skus. We'll resize the array and pass it back.
        Array.Resize(ref matchingSkus, matchNumber);
        return matchingSkus;
    }
    catch (Exception ex)
    {
        // Handle the exception
    }
}

获得匹配 sku 的列表后,您可以遍历数组并构建一个仅返回匹配 sku 的查询命令。

对于性能的想法,这是我们发现的(执行以下步骤):

  • 搜索 ~171,000 项
  • 创建所有匹配项目的列表
  • 查询数据库,只返回匹配项
  • 构建成熟的项目(类似于 SmallItem 类,但更多的领域)
  • 使用完整的项目对象填充数据网格。

在我们的移动设备上,整个过程需要 2-4 秒(如果我们在搜索所有项目之前达到匹配限制则需要 2 秒……如果我们必须扫描每个项目则需要 4 秒)。

我也尝试过不使用非托管代码并使用 String.IndexOf (并尝试过 String.Contains... 与 IndexOf 具有应有的性能相同)。这种方式要慢得多……大约 25 秒。

我还尝试使用 StreamReader 和包含 [Sku Number]|[Description] 行的文件。该代码类似于非托管代码示例。整个扫描这种方式大约需要 15 秒。速度还不错,但也不是很好。与我向您展示的方式相比,文件和 StreamReader 方法有一个优势。该文件可以提前创建。我向您展示的方式需要内存和在应用程序启动时加载列表的初始时间。对于我们的 171,000 件商品,这大约需要 2 分钟。如果您有能力在每次应用程序启动时等待初始加载(当然可以在单独的线程上完成),那么以这种方式搜索是最快的方式(至少我已经找到)。

希望有帮助。

PS - 感谢 Dolch 帮助处理一些非托管代码。

于 2009-01-16T19:41:03.533 回答
2

你可以试试 Lucene.Net。我不确定它是否适合移动设备,但它被称为“高性能、全功能的文本搜索引擎库”。

http://incubator.apache.org/lucene.net/ http://lucene.apache.org/java/docs/

于 2008-11-09T21:59:44.083 回答