2

我正在使用 The Visualizer 绘制我正在播放的声音文件的可视化。声波正在显示,但我想让它不那么详细,因为它会影响我的帧速率。这方面的文档非常有限。所以我试图做以下事情:

mVisualizer.setCaptureSize(2);

将捕获率设置为非常低的值。然而,这条线似乎是用相同数量的细节绘制的。我在文档中读到:

Sets the capture size, i.e. the number of bytes returned by getWaveForm(byte[]) and getFft(byte[]) methods.

我遇到的另一个问题是,我想在我正在播放的声音文件中检测具有高能量水平的声音,以便我可以在屏幕上直观地表示它们。例如:屏幕与基线一起闪烁。这是我到目前为止所拥有的:

public static void setupVisualizer() {
    mVisualizer = new Visualizer(mpSong.getAudioSessionId());
    mVisualizer.setCaptureSize(Visualizer.getCaptureSizeRange()[1]);
    mVisualizer.setDataCaptureListener(
            new Visualizer.OnDataCaptureListener() {
                public void onWaveFormDataCapture(Visualizer visualizer,
                        byte[] bytes, int samplingRate) {
                    Game.updateVisualizer(bytes);
                }

                public void onFftDataCapture(Visualizer visualizer,
                        byte[] bytes, int samplingRate) {
                }
            }, Visualizer.getMaxCaptureRate() / 2, true, false);
}

是否可以检测到此侦听器内部的某些声音?或者有什么替代方案?对不起,我的英语不好。非常感谢您的时间朋友。

4

1 回答 1

6

好的,经过几个小时的测试和研究,我找到了解决方案。它可能不是很准确,但这是我能想到的唯一选择。我做了一个名为 BeatDetector 的类:

public class BeatDetectorByFrequency {
private static final String TAG = "TEST";

private Visualizer mVisualizer = null;

private double mRunningSoundAvg[];
private double mCurrentAvgEnergyOneSec[];
private int mNumberOfSamplesInOneSec;
private long mSystemTimeStartSec;
// FREQS
private static final int LOW_FREQUENCY = 300;
private static final int MID_FREQUENCY = 2500;
private static final int HIGH_FREQUENCY = 10000;
private OnBeatDetectedListener onBeatDetectedListener = null;

public BeatDetectorByFrequency() {
    init();
}

private void init() {
    mRunningSoundAvg = new double[3];
    mCurrentAvgEnergyOneSec = new double[3];
    mCurrentAvgEnergyOneSec[0] = -1;
    mCurrentAvgEnergyOneSec[1] = -1;
    mCurrentAvgEnergyOneSec[2] = -1;
}

public void link(MediaPlayer player) {
    if (player == null) {
        throw new NullPointerException("Cannot link to null MediaPlayer");
    }
    mVisualizer = new Visualizer(player.getAudioSessionId());
    mVisualizer.setCaptureSize(Visualizer.getCaptureSizeRange()[1]);

    Visualizer.OnDataCaptureListener captureListener = new Visualizer.OnDataCaptureListener() {
        @Override
        public void onWaveFormDataCapture(Visualizer visualizer,
                byte[] bytes, int samplingRate) {
            // DO NOTHING
        }

        @Override
        public void onFftDataCapture(Visualizer visualizer, byte[] bytes,
                int samplingRate) {
            updateVisualizerFFT(bytes);
        }
    };

    mVisualizer.setDataCaptureListener(captureListener,
            Visualizer.getMaxCaptureRate() / 2, false, true);
    mVisualizer.setEnabled(true);
    player.setOnCompletionListener(new MediaPlayer.OnCompletionListener() {
        @Override
        public void onCompletion(MediaPlayer mediaPlayer) {
            mVisualizer.setEnabled(false);
        }
    });
    mSystemTimeStartSec = System.currentTimeMillis();
}

public void release() {
    if (mVisualizer != null) {
        mVisualizer.setEnabled(false);
        mVisualizer.release();
    }
}

public void pause() {
    if (mVisualizer != null) {
        mVisualizer.setEnabled(false);
    }
}

public void resume() {
    if (mVisualizer != null) {
        mVisualizer.setEnabled(true);
    }
}

public void updateVisualizerFFT(byte[] audioBytes) {
    int energySum = 0;
    energySum += Math.abs(audioBytes[0]);
    int k = 2;
    double captureSize = mVisualizer.getCaptureSize() / 2;
    int sampleRate = mVisualizer.getSamplingRate() / 2000;
    double nextFrequency = ((k / 2) * sampleRate) / (captureSize);
    while (nextFrequency < LOW_FREQUENCY) {
        energySum += Math.sqrt((audioBytes[k] * audioBytes[k])
                * (audioBytes[k + 1] * audioBytes[k + 1]));
        k += 2;
        nextFrequency = ((k / 2) * sampleRate) / (captureSize);
    }
    double sampleAvgAudioEnergy = (double) energySum
            / (double) ((k * 1.0) / 2.0);

    mRunningSoundAvg[0] += sampleAvgAudioEnergy;
    if ((sampleAvgAudioEnergy > mCurrentAvgEnergyOneSec[0])
            && (mCurrentAvgEnergyOneSec[0] > 0)) {
        fireBeatDetectedLowEvent(sampleAvgAudioEnergy);
    }
    energySum = 0;
    while (nextFrequency < MID_FREQUENCY) {
        energySum += Math.sqrt((audioBytes[k] * audioBytes[k])
                * (audioBytes[k + 1] * audioBytes[k + 1]));
        k += 2;
        nextFrequency = ((k / 2) * sampleRate) / (captureSize);
    }

    sampleAvgAudioEnergy = (double) energySum / (double) ((k * 1.0) / 2.0);
    mRunningSoundAvg[1] += sampleAvgAudioEnergy;
    if ((sampleAvgAudioEnergy > mCurrentAvgEnergyOneSec[1])
            && (mCurrentAvgEnergyOneSec[1] > 0)) {
        fireBeatDetectedMidEvent(sampleAvgAudioEnergy);
    }
    energySum = Math.abs(audioBytes[1]);

    while ((nextFrequency < HIGH_FREQUENCY) && (k < audioBytes.length)) {
        energySum += Math.sqrt((audioBytes[k] * audioBytes[k])
                * (audioBytes[k + 1] * audioBytes[k + 1]));
        k += 2;
        nextFrequency = ((k / 2) * sampleRate) / (captureSize);
    }

    sampleAvgAudioEnergy = (double) energySum / (double) ((k * 1.0) / 2.0);
    mRunningSoundAvg[2] += sampleAvgAudioEnergy;
    if ((sampleAvgAudioEnergy > mCurrentAvgEnergyOneSec[2])
            && (mCurrentAvgEnergyOneSec[2] > 0)) {
        fireBeatDetectedHighEvent(sampleAvgAudioEnergy);
    }

    mNumberOfSamplesInOneSec++;
    if ((System.currentTimeMillis() - mSystemTimeStartSec) > 1000) {
        mCurrentAvgEnergyOneSec[0] = mRunningSoundAvg[0]
                / mNumberOfSamplesInOneSec;
        mCurrentAvgEnergyOneSec[1] = mRunningSoundAvg[1]
                / mNumberOfSamplesInOneSec;
        mCurrentAvgEnergyOneSec[2] = mRunningSoundAvg[2]
                / mNumberOfSamplesInOneSec;
        mNumberOfSamplesInOneSec = 0;
        mRunningSoundAvg[0] = 0.0;
        mRunningSoundAvg[1] = 0.0;
        mRunningSoundAvg[2] = 0.0;
        mSystemTimeStartSec = System.currentTimeMillis();
    }
}

// USE INTERFACES IN NEXT UPDATE:
private void fireBeatDetectedLowEvent(double power) {
    // Utility.log("LOW BEAT DETECTED!");
    Game.lowBeat(power);
    if (onBeatDetectedListener != null) {
        onBeatDetectedListener.onBeatDetectedLow();
    }
}

private void fireBeatDetectedMidEvent(double power) {
    // Utility.log("MEDIUM BEAT DETECTED!");
    Game.mediumBeat(power);
    if (onBeatDetectedListener != null) {
        onBeatDetectedListener.onBeatDetectedMid();
    }
}

private void fireBeatDetectedHighEvent(double power) {
    // Utility.log("HIGH BEAT DETECTED!");
    Game.highBeat(power);
    if (onBeatDetectedListener != null) {
        onBeatDetectedListener.onBeatDetectedHigh();
    }
}

public void setOnBeatDetectedListener(OnBeatDetectedListener listener) {
    onBeatDetectedListener = listener;
}

public interface OnBeatDetectedListener {
    public abstract void onBeatDetectedLow();

    public abstract void onBeatDetectedMid();

    public abstract void onBeatDetectedHigh();
}
}

它以一个 MediaPlayer 对象为参数,然后根据字节数据的 EnergySum 计算三个不同的频率。可以根据需要多次拆分频率。我正在考虑创建一个频率数组,每个频率都有一个听众。然后我使用以下绘制一个矩形:

public static void highBeat(double power) {
    HIGH_FREQUENCY += (power * 1000); // ORIGINAL: * 1000
    if (HIGH_FREQUENCY > GameValues.FREQ_MAX) {
        HIGH_FREQUENCY = GameValues.FREQ_MAX;
    }
    updateHighFreq();
}

public static void updateHighFreq() {
    prcnt = HIGH_FREQUENCY * 100 / GameValues.FREQ_MAX;
    if (prcnt < 0)
        prcnt = 0;
    HIGH_F_HEIGHT = (int) (GameValues.FREQ_MAX_HEIGHT * (prcnt / 100));
}

这通过基于条形的最大功率和最大高度计算百分比来计算矩形的高度。这不是很准确,但这是我能想到的最好的东西。同样,这可以针对任意数量的频率进行。以下是一些帮助我的链接:

https://android.googlesource.com/platform/cts/+/master/tests/tests/media/src/android/media/cts/VisualizerTest.java

https://www.codota.com/android/scenarios/518916b8da0af8330dfa9398/android.media.audiofx.Visualizer?tag=out_2013_05_05_07_19_34

希望我可以帮助其他人解决这些问题。

于 2014-12-22T22:42:55.263 回答