我正在寻找类似“msm”包的东西,但是对于离散的马尔可夫链。例如,如果我有一个这样定义的转换矩阵
Pi <- matrix(c(1/3,1/3,1/3,
0,2/3,1/6,
2/3,0,1/2))
对于状态 A、B、C。如何根据该转换矩阵模拟马尔可夫链?
我正在寻找类似“msm”包的东西,但是对于离散的马尔可夫链。例如,如果我有一个这样定义的转换矩阵
Pi <- matrix(c(1/3,1/3,1/3,
0,2/3,1/6,
2/3,0,1/2))
对于状态 A、B、C。如何根据该转换矩阵模拟马尔可夫链?
不久前,我编写了一组用于模拟和估计离散马尔可夫链概率矩阵的函数:http ://www.feferraz.net/files/lista/DTMC.R 。
您所问的相关代码:
simula <- function(trans,N) {
transita <- function(char,trans) {
sample(colnames(trans),1,prob=trans[char,])
}
sim <- character(N)
sim[1] <- sample(colnames(trans),1)
for (i in 2:N) {
sim[i] <- transita(sim[i-1],trans)
}
sim
}
#example
#Obs: works for N >= 2 only. For higher order matrices just define an
#appropriate mattrans
mattrans <- matrix(c(0.97,0.03,0.01,0.99),ncol=2,byrow=TRUE)
colnames(mattrans) <- c('0','1')
row.names(mattrans) <- c('0','1')
instancia <- simula(mattrans,255) # simulates 255 steps in the process
啊,当我为你写它的时候,你找到了解决方案。这是我想出的一个简单示例:
run = function()
{
# The probability transition matrix
trans = matrix(c(1/3,1/3,1/3,
0,2/3,1/3,
2/3,0,1/3), ncol=3, byrow=TRUE);
# The state that we're starting in
state = ceiling(3 * runif(1, 0, 1));
cat("Starting state:", state, "\n");
# Make twenty steps through the markov chain
for (i in 1:20)
{
p = 0;
u = runif(1, 0, 1);
cat("> Dist:", paste(round(c(trans[state,]), 2)), "\n");
cat("> Prob:", u, "\n");
newState = state;
for (j in 1:ncol(trans))
{
p = p + trans[state, j];
if (p >= u)
{
newState = j;
break;
}
}
cat("*", state, "->", newState, "\n");
state = newState;
}
}
run();
请注意,您的概率转换矩阵在每一行中的总和不会为 1,它应该这样做。我的例子有一个稍微改变的概率转移矩阵,它遵守这个规则。
您现在可以使用markovchain
CRAN 中提供的包。用户手册。很好,有几个例子。