我想使用 pmml 库导出 Caret 随机森林模型,以便可以将其用于 Java 中的预测。这是我得到的错误的再现。
data(iris)
require(caret)
require(pmml)
rfGrid2 <- expand.grid(.mtry = c(1,2))
fitControl2 <- trainControl(
method = "repeatedcv",
number = NUMBER_OF_CV,
repeats = REPEATES)
model.Test <- train(Species ~ .,
data = iris,
method ="rf",
trControl = fitControl2,
ntree = NUMBER_OF_TREES,
importance = TRUE,
tuneGrid = rfGrid2)
print(model.Test)
pmml(model.Test)
Error in UseMethod("pmml") :
no applicable method for 'pmml' applied to an object of class "c('train', 'train.formula')"
我在谷歌上搜索了一段时间,发现实际上很少有关于导出到 PMML 的信息,一般来说,pmml 库的随机森林位于:
methods(pmml)
[1] pmml.ada pmml.coxph pmml.cv.glmnet pmml.glm pmml.hclust pmml.itemsets pmml.kmeans
[8] pmml.ksvm pmml.lm pmml.multinom pmml.naiveBayes pmml.nnet pmml.randomForest pmml.rfsrc
[15] pmml.rpart pmml.rules pmml.svm
它使用直接随机森林模型工作,但不是插入符号训练的模型。
library(randomForest)
iris.rf <- randomForest(Species ~ ., data=iris, ntree=20)
# Convert to pmml
pmml(iris.rf)
# this works!!!
str(iris.rf)
List of 19
$ call : language randomForest(formula = Species ~ ., data = iris, ntree = 20)
$ type : chr "classification"
$ predicted : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
...
str(model.Test)
List of 22
$ method : chr "rf"
$ modelInfo :List of 14
..$ label : chr "Random Forest"
..$ library : chr "randomForest"
..$ loop : NULL
..$ type : chr [1:2] "Classification" "Regression"
...