0

使用 Spark 1.1

我有一份工作如下:

  1. 读取给定根目录下的文件夹列表,并行化列表
  2. 对于每个文件夹,阅读它下面的文件 - 这些是 gzip 文件
  3. 对于每个文件,提取内容 - 这些是行,每行代表一个事件,字段用制表符 (TSV) 分隔
  4. 创建所有行的单个 RDD。
  5. 将 TSV 转换为 json。

(现在线条代表某种事件类型。有 4 种类型:会话、请求、推荐、用户事件)

  1. 仅过滤掉会话事件。根据某些用户 ID 字段仅对其中的 1:100 进行采样。将它们转换为一对,用一个代表一些输出结构的键(如:事件类型/日期/事件),然后将其写入 FS。
  2. 对请求和用户事件执行相同的操作

(对于推荐,不能根据用户 id 进行采样(因为那里不存在),但是我们知道基于相互请求 id 字段的请求和推荐之间存在 1:1 的关系。所以:)

  1. 创建不同请求 ID 的列表。将这个列表与基于请求id作为key的推荐列表加入,从而实现我们想要的过滤。然后将缩减后的列表输出到FS。

现在,这是我的问题。我用来做这些事情的代码适用于小规模。但是当我在相对较大的输入上运行时,我使用一个由 80 台机器组成的集群,每台机器有 8 个内核和 50GB 内存,我可以看到很多机器没有被使用,这意味着只有一个内核被占用(也只有 ~20%),在为作业配置的 40GB 内存中,内存只有 16GB。

我认为在某个地方我的转换没有很好地并行化,但我不确定在哪里以及为什么。这是我的大部分代码(我省略了一些我认为与问题无关的辅助功能)

 public static void main(String[] args) {

    BasicConfigurator.configure();

    conf[0] = new Conf("local[4]");
    conf[1] = new Conf("spark://hadoop-m:7077");
    Conf configuration = conf[1];

    if (args.length != 4) {
        log.error("Error in parameters. Syntax: <input path> <output_path> <filter_factor> <locality>\nfilter_factor is what fraction of sessions to process. For example, to process 1/100 of sessions, use 100\nlocality should be set to \"local\" in case running on local environment, and to \"remote\" otherwise.");
        System.exit(-1);
    }

    final String inputPath = args[0];
    final String outputPath = args[1];
    final Integer filterFactor;

    if (args[3].equals("local")) {
        configuration = conf[0];
    }

    log.setLevel(Level.DEBUG);
    Logger.getRootLogger().removeAppender("console");
    final SparkConf conf = new SparkConf().setAppName("phase0").setMaster(configuration.getMaster());
    conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer");
    conf.set("spark.kryo.registrator", "com.doit.customer.dataconverter.MyRegistrator");
    final JavaSparkContext sc = new JavaSparkContext(conf);
    if (configuration.getMaster().contains("spark:")) {
        sc.addJar("/home/hadoop/hadoop-install/phase0-1.0-SNAPSHOT-jar-with-dependencies.jar");
    }
    try {
        filterFactor = Integer.parseInt(args[2]);
        // read all folders from root
        Path inputPathObj = new Path(inputPath);
        FileSystem fs = FileSystem.get(inputPathObj.toUri(), new Configuration(true));
        FileStatus[] statusArr = fs.globStatus(inputPathObj);
        List<FileStatus> statusList = Arrays.asList(statusArr);

        List<String> pathsStr = convertFileStatusToPath(statusList);

        JavaRDD<String> paths = sc.parallelize(pathsStr);

        // read all files from each folder
        JavaRDD<String> filePaths = paths.mapPartitions(new FlatMapFunction<Iterator<String>, String>() {
            @Override
            public Iterable<String> call(Iterator<String> pathsIterator) throws Exception {
                List<String> filesPath = new ArrayList<String>();
                if (pathsIterator != null) {
                    while (pathsIterator.hasNext()) {
                        String currFolder = pathsIterator.next();
                        Path currPath = new Path(currFolder);
                        FileSystem fs = FileSystem.get(currPath.toUri(), new Configuration(true));
                        FileStatus[] files = fs.listStatus(currPath);
                        List<FileStatus> filesList = Arrays.asList(files);
                        List<String> filesPathsStr = convertFileStatusToPath(filesList);
                        filesPath.addAll(filesPathsStr);
                    }
                }
                return filesPath;
            }
        });


        // Transform list of files to list of all files' content in lines
        JavaRDD<String> typedData = filePaths.map(new Function<String, List<String>>() {
            @Override
            public List<String> call(String filePath) throws Exception {
                Tuple2<String, List<String>> tuple = null;
                try {
                    String fileType = null;
                    List<String> linesList = new ArrayList<String>();
                    Configuration conf = new Configuration();
                    CompressionCodecFactory compressionCodecs = new CompressionCodecFactory(conf);
                    Path path = new Path(filePath);
                    fileType = getType(path.getName());

                    // filter non-trc files
                    if (!path.getName().startsWith("1")) {
                        return linesList;
                    }

                    CompressionCodec codec = compressionCodecs.getCodec(path);
                    FileSystem fs = path.getFileSystem(conf);
                    InputStream in = fs.open(path);
                    if (codec != null) {
                        in = codec.createInputStream(in);
                    } else {
                        throw new IOException();
                    }

                    BufferedReader r = new BufferedReader(new InputStreamReader(in, "UTF-8"), BUFFER_SIZE);

                    // This line will not be added to the list ,
                    // which is what we want - filter the header row
                    String line = r.readLine();

                    // Read all lines
                    while ((line = r.readLine()) != null) {
                        try {
                            String sliceKey = getSliceKey(line, fileType);
                            // Adding event type and output slice key as additional fields
                            linesList.add(fileType + "\t" + sliceKey + "\t" + line);
                        } catch(ParseException e) {
                        }
                    }

                    return linesList;
                } catch (Exception e) { // Filtering of files whose reading went wrong
                    log.error("Reading of the file " + filePath + " went wrong: " + e.getMessage());
                    return new ArrayList();
                }
            }
            // flatten to one big list with all the lines
        }).flatMap(new FlatMapFunction<List<String>, String>() {
            @Override
            public Iterable<String> call(List<String> strings) throws Exception {
                return strings;
            }
        });

        // convert tsv to json

        JavaRDD<ObjectNode> jsons = typedData.mapPartitions(new FlatMapFunction<Iterator<String>, ObjectNode>() {
            @Override
            public Iterable<ObjectNode> call(Iterator<String> stringIterator) throws Exception {
                List<ObjectNode> res = new ArrayList<>();
                while(stringIterator.hasNext()) {
                    String currLine = stringIterator.next();
                    Iterator<String> i = Splitter.on("\t").split(currLine).iterator();
                    if (i.hasNext()) {
                        String type = i.next();
                        ObjectNode json = convert(currLine, type, filterFactor);
                        if(json != null) {
                            res.add(json);
                        }
                    }
                }
                return res;
            }
        }).cache();


        createOutputType(jsons, "Session", outputPath, null);
        createOutputType(jsons, "UserEvent", outputPath, null);
        JavaRDD<ObjectNode> requests = createOutputType(jsons, "Request", outputPath, null);


        // Now leave only the set of request ids - to inner join with the recommendations
        JavaPairRDD<String,String> requestsIds = requests.mapToPair(new PairFunction<ObjectNode, String, String>() {
            @Override
            public Tuple2<String, String> call(ObjectNode jsonNodes) throws Exception {
                String id = jsonNodes.get("id").asText();
                return new Tuple2<String, String>(id,id);
            }
        }).distinct();

        createOutputType(jsons,"RecommendationList", outputPath, requestsIds);

    } catch (IOException e) {
        log.error(e);
        System.exit(1);
    } catch (NumberFormatException e) {
        log.error("filter factor is not a valid number!!");
        System.exit(-1);
    }

    sc.stop();

}

private static JavaRDD<ObjectNode> createOutputType(JavaRDD jsonsList, final String type, String outputPath,JavaPairRDD<String,String> joinKeys) {

    outputPath = outputPath + "/" + type;

    JavaRDD events = jsonsList.filter(new Function<ObjectNode, Boolean>() {
        @Override
        public Boolean call(ObjectNode jsonNodes) throws Exception {
            return jsonNodes.get("type").asText().equals(type);
        }
    });


    // This is in case we need to narrow the list to match some other list of ids... Recommendation List, for example... :)
    if(joinKeys != null) {
        JavaPairRDD<String,ObjectNode> keyedEvents = events.mapToPair(new PairFunction<ObjectNode, String, ObjectNode>() {
            @Override
            public Tuple2<String, ObjectNode> call(ObjectNode jsonNodes) throws Exception {
                return new Tuple2<String, ObjectNode>(jsonNodes.get("requestId").asText(),jsonNodes);
            }
        });

        JavaRDD<ObjectNode> joinedEvents = joinKeys.join(keyedEvents).values().map(new Function<Tuple2<String, ObjectNode>, ObjectNode>() {
           @Override
           public ObjectNode call(Tuple2<String, ObjectNode> stringObjectNodeTuple2) throws Exception {
               return stringObjectNodeTuple2._2;
           }
        });
        events = joinedEvents;
    }


    JavaPairRDD<String,Iterable<ObjectNode>> groupedEvents = events.mapToPair(new PairFunction<ObjectNode, String, ObjectNode>() {
        @Override
        public Tuple2<String, ObjectNode> call(ObjectNode jsonNodes) throws Exception {
            return new Tuple2<String, ObjectNode>(jsonNodes.get("sliceKey").asText(),jsonNodes);
        }
    }).groupByKey();
    // Add convert jsons to strings and add "\n" at the end of each

    JavaPairRDD<String, String> groupedStrings = groupedEvents.mapToPair(new PairFunction<Tuple2<String, Iterable<ObjectNode>>, String, String>() {
        @Override
        public Tuple2<String, String> call(Tuple2<String, Iterable<ObjectNode>> content) throws Exception {
            String string = jsonsToString(content._2);
            log.error(string);
            return new Tuple2<>(content._1, string);
        }
    });
    groupedStrings.saveAsHadoopFile(outputPath, String.class, String.class, KeyBasedMultipleTextOutputFormat.class);
    return events;
}

// Notice the special case of if(joinKeys != null) in which I join the recommendations with request ids.

最后,我用来启动 Spark 作业的命令是:

spark-submit --class com.doit.customer.dataconverter.Phase0 --driver-cores 8 --total-executor-cores 632 --driver-memory 40g --executor-memory 40G --deploy-mode cluster /home/hadoop/hadoop-install/phase0-1.0-SNAPSHOT-jar-with-dependencies.jar gs://input/2014_07_31* gs://output/2014_07_31 100 remote
4

1 回答 1

2

您的初始分区基于根目录 (sc.parallelize(pathsStr)) 中的文件夹集。您的流程中有两个步骤可能会严重影响您的分区: 1) 如果某些文件夹的文件比其他文件夹多,则读取每个文件夹中的文件列表;2) 从每个文件中读取 TSV 行,如果某些文件的行数比其他文件多。

如果您的文件大小大致相同,但某些文件夹中的文件比其他文件夹多,您可以在收集文件名后重新平衡分区。为 filePaths 设置初始值后,尝试添加以下行:

filePaths = filePaths.repartition(sc.defaultParallelism());

这会将收集到的文件名洗牌到平衡的分区中。

如果由于某些文件明显大于其他文件而导致不平衡,您可以尝试通过类似地对其调用 repartition 来重新平衡您的 typedData RDD,尽管这会更昂贵,因为它会打乱所有 TSV 数据。

或者,如果您重新平衡 filePaths 并且由于有一些较大的文件最终位于几个分区中而仍然存在一些分区不平衡,那么您可以通过在 repartition 参数中使用更大的数字来获得更好的性能,例如乘以四,这样你就得到了四倍于核心的分区。这会增加一点通信成本,但如果它在 typedData 中提供更好的分区大小平衡,可能会是一个胜利。

于 2014-11-21T03:58:28.133 回答