如果有定义的记录分隔符,如上面指出的“>”,则可以使用自定义 Hadoop 配置来完成:
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.io.{LongWritable, Text}
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat
val conf = new Configuration
conf.set("textinputformat.record.delimiter", ">")
// genome.txt contains the records provided in the question without the "..."
val dataset = sc.newAPIHadoopFile("./data/genome.txt", classOf[TextInputFormat], classOf[LongWritable], classOf[Text], conf)
val data = dataset.map(x=>x._2.toString)
让我们看一下数据
data.collect
res11: Array[String] =
Array("", "str1_name
ATCGGKFKKVKKFKRLFFVLFLRL
FDJKALGFJVKRIKFKVKFGKLRL
FJDLALLLGL
", "str2_name
ATCGGKFKKVKKFKRLFFVLFLRL
FDJKALGFJVKRIKFKVKFGKLRL
FJDLALLLGL
")
我们可以很容易地用这个字符串制作记录
val records = data.map{ multiLine => val lines = multiLine.split("\n"); (lines.head, lines.tail)}
records.collect
res14: Array[(String, Array[String])] = Array(("",Array()),
(str1_name,Array(ATCGGKFKKVKKFKRLFFVLFLRL, FDJKALGFJVKRIKFKVKFGKLRL, FJDLALLLGL)),
(str2_name,Array(ATCGGKFKKVKKFKRLFFVLFLRL, FDJKALGFJVKRIKFKVKFGKLRL, FJDLALLLGL)))
(使用过滤器取出第一个空记录......为读者练习)