我有一个dictionary
:键是字符串,值是整数。
例子:
stats = {'a':1000, 'b':3000, 'c': 100}
我想得到'b'
一个答案,因为它是具有更高价值的关键。
我使用带有反向键值元组的中间列表执行了以下操作:
inverse = [(value, key) for key, value in stats.items()]
print max(inverse)[1]
那是更好(或更优雅)的方法吗?
我有一个dictionary
:键是字符串,值是整数。
例子:
stats = {'a':1000, 'b':3000, 'c': 100}
我想得到'b'
一个答案,因为它是具有更高价值的关键。
我使用带有反向键值元组的中间列表执行了以下操作:
inverse = [(value, key) for key, value in stats.items()]
print max(inverse)[1]
那是更好(或更优雅)的方法吗?
max(stats, key=stats.get)
您可以operator.itemgetter
为此使用:
import operator
stats = {'a':1000, 'b':3000, 'c': 100}
max(stats.iteritems(), key=operator.itemgetter(1))[0]
而不是在内存使用中建立一个新列表stats.iteritems()
。该函数的key
参数max()
是计算用于确定如何对项目进行排名的键的函数。
请注意,如果您有另一个键值对 'd': 3000 ,即使它们都具有最大值,此方法也只会返回两者之一。
>>> import operator
>>> stats = {'a':1000, 'b':3000, 'c': 100, 'd':3000}
>>> max(stats.iteritems(), key=operator.itemgetter(1))[0]
'b'
如果使用 Python3:
>>> max(stats.items(), key=operator.itemgetter(1))[0]
'b'
我已经测试了许多变体,这是返回具有最大值的 dict 键的最快方法:
def keywithmaxval(d):
""" a) create a list of the dict's keys and values;
b) return the key with the max value"""
v=list(d.values())
k=list(d.keys())
return k[v.index(max(v))]
为了给你一个想法,这里有一些候选方法:
def f1():
v=list(d1.values())
k=list(d1.keys())
return k[v.index(max(v))]
def f2():
d3={v:k for k,v in d1.items()}
return d3[max(d3)]
def f3():
return list(filter(lambda t: t[1]==max(d1.values()), d1.items()))[0][0]
def f3b():
# same as f3 but remove the call to max from the lambda
m=max(d1.values())
return list(filter(lambda t: t[1]==m, d1.items()))[0][0]
def f4():
return [k for k,v in d1.items() if v==max(d1.values())][0]
def f4b():
# same as f4 but remove the max from the comprehension
m=max(d1.values())
return [k for k,v in d1.items() if v==m][0]
def f5():
return max(d1.items(), key=operator.itemgetter(1))[0]
def f6():
return max(d1,key=d1.get)
def f7():
""" a) create a list of the dict's keys and values;
b) return the key with the max value"""
v=list(d1.values())
return list(d1.keys())[v.index(max(v))]
def f8():
return max(d1, key=lambda k: d1[k])
tl=[f1,f2, f3b, f4b, f5, f6, f7, f8, f4,f3]
cmpthese.cmpthese(tl,c=100)
测试词典:
d1={1: 1, 2: 2, 3: 8, 4: 3, 5: 6, 6: 9, 7: 17, 8: 4, 9: 20, 10: 7, 11: 15,
12: 10, 13: 10, 14: 18, 15: 18, 16: 5, 17: 13, 18: 21, 19: 21, 20: 8,
21: 8, 22: 16, 23: 16, 24: 11, 25: 24, 26: 11, 27: 112, 28: 19, 29: 19,
30: 19, 3077: 36, 32: 6, 33: 27, 34: 14, 35: 14, 36: 22, 4102: 39, 38: 22,
39: 35, 40: 9, 41: 110, 42: 9, 43: 30, 44: 17, 45: 17, 46: 17, 47: 105, 48: 12,
49: 25, 50: 25, 51: 25, 52: 12, 53: 12, 54: 113, 1079: 50, 56: 20, 57: 33,
58: 20, 59: 33, 60: 20, 61: 20, 62: 108, 63: 108, 64: 7, 65: 28, 66: 28, 67: 28,
68: 15, 69: 15, 70: 15, 71: 103, 72: 23, 73: 116, 74: 23, 75: 15, 76: 23, 77: 23,
78: 36, 79: 36, 80: 10, 81: 23, 82: 111, 83: 111, 84: 10, 85: 10, 86: 31, 87: 31,
88: 18, 89: 31, 90: 18, 91: 93, 92: 18, 93: 18, 94: 106, 95: 106, 96: 13, 9232: 35,
98: 26, 99: 26, 100: 26, 101: 26, 103: 88, 104: 13, 106: 13, 107: 101, 1132: 63,
2158: 51, 112: 21, 113: 13, 116: 21, 118: 34, 119: 34, 7288: 45, 121: 96, 122: 21,
124: 109, 125: 109, 128: 8, 1154: 32, 131: 29, 134: 29, 136: 16, 137: 91, 140: 16,
142: 104, 143: 104, 146: 117, 148: 24, 149: 24, 152: 24, 154: 24, 155: 86, 160: 11,
161: 99, 1186: 76, 3238: 49, 167: 68, 170: 11, 172: 32, 175: 81, 178: 32, 179: 32,
182: 94, 184: 19, 31: 107, 188: 107, 190: 107, 196: 27, 197: 27, 202: 27, 206: 89,
208: 14, 214: 102, 215: 102, 220: 115, 37: 22, 224: 22, 226: 14, 232: 22, 233: 84,
238: 35, 242: 97, 244: 22, 250: 110, 251: 66, 1276: 58, 256: 9, 2308: 33, 262: 30,
263: 79, 268: 30, 269: 30, 274: 92, 1300: 27, 280: 17, 283: 61, 286: 105, 292: 118,
296: 25, 298: 25, 304: 25, 310: 87, 1336: 71, 319: 56, 322: 100, 323: 100, 325: 25,
55: 113, 334: 69, 340: 12, 1367: 40, 350: 82, 358: 33, 364: 95, 376: 108,
377: 64, 2429: 46, 394: 28, 395: 77, 404: 28, 412: 90, 1438: 53, 425: 59, 430: 103,
1456: 97, 433: 28, 445: 72, 448: 23, 466: 85, 479: 54, 484: 98, 485: 98, 488: 23,
6154: 37, 502: 67, 4616: 34, 526: 80, 538: 31, 566: 62, 3644: 44, 577: 31, 97: 119,
592: 26, 593: 75, 1619: 48, 638: 57, 646: 101, 650: 26, 110: 114, 668: 70, 2734: 41,
700: 83, 1732: 30, 719: 52, 728: 96, 754: 65, 1780: 74, 4858: 47, 130: 29, 790: 78,
1822: 43, 2051: 38, 808: 29, 850: 60, 866: 29, 890: 73, 911: 42, 958: 55, 970: 99,
976: 24, 166: 112}
以及Python 3.2下的测试结果:
rate/sec f4 f3 f3b f8 f5 f2 f4b f6 f7 f1
f4 454 -- -2.5% -96.9% -97.5% -98.6% -98.6% -98.7% -98.7% -98.9% -99.0%
f3 466 2.6% -- -96.8% -97.4% -98.6% -98.6% -98.6% -98.7% -98.9% -99.0%
f3b 14,715 3138.9% 3057.4% -- -18.6% -55.5% -56.0% -56.4% -58.3% -63.8% -68.4%
f8 18,070 3877.3% 3777.3% 22.8% -- -45.4% -45.9% -46.5% -48.8% -55.5% -61.2%
f5 33,091 7183.7% 7000.5% 124.9% 83.1% -- -1.0% -2.0% -6.3% -18.6% -29.0%
f2 33,423 7256.8% 7071.8% 127.1% 85.0% 1.0% -- -1.0% -5.3% -17.7% -28.3%
f4b 33,762 7331.4% 7144.6% 129.4% 86.8% 2.0% 1.0% -- -4.4% -16.9% -27.5%
f6 35,300 7669.8% 7474.4% 139.9% 95.4% 6.7% 5.6% 4.6% -- -13.1% -24.2%
f7 40,631 8843.2% 8618.3% 176.1% 124.9% 22.8% 21.6% 20.3% 15.1% -- -12.8%
f1 46,598 10156.7% 9898.8% 216.7% 157.9% 40.8% 39.4% 38.0% 32.0% 14.7% --
在 Python 2.7 下:
rate/sec f3 f4 f8 f3b f6 f5 f2 f4b f7 f1
f3 384 -- -2.6% -97.1% -97.2% -97.9% -97.9% -98.0% -98.2% -98.5% -99.2%
f4 394 2.6% -- -97.0% -97.2% -97.8% -97.9% -98.0% -98.1% -98.5% -99.1%
f8 13,079 3303.3% 3216.1% -- -5.6% -28.6% -29.9% -32.8% -38.3% -49.7% -71.2%
f3b 13,852 3504.5% 3412.1% 5.9% -- -24.4% -25.8% -28.9% -34.6% -46.7% -69.5%
f6 18,325 4668.4% 4546.2% 40.1% 32.3% -- -1.8% -5.9% -13.5% -29.5% -59.6%
f5 18,664 4756.5% 4632.0% 42.7% 34.7% 1.8% -- -4.1% -11.9% -28.2% -58.8%
f2 19,470 4966.4% 4836.5% 48.9% 40.6% 6.2% 4.3% -- -8.1% -25.1% -57.1%
f4b 21,187 5413.0% 5271.7% 62.0% 52.9% 15.6% 13.5% 8.8% -- -18.5% -53.3%
f7 26,002 6665.8% 6492.4% 98.8% 87.7% 41.9% 39.3% 33.5% 22.7% -- -42.7%
f1 45,354 11701.5% 11399.0% 246.8% 227.4% 147.5% 143.0% 132.9% 114.1% 74.4% --
你可以看到这f1
是 Python 3.2 和 2.7 下最快的(或者更完整的,keywithmaxval
在这篇文章的顶部)
您可以使用:
max(d, key = d.get)
# which is equivalent to
max(d, key = lambda k : d.get(k))
要返回键值对,请使用:
max(d.items(), key = lambda k : k[1])
如果您只需要知道一个具有最大值的键,您可以不这样做,iterkeys
或者iteritems
因为在 Python 中通过字典进行迭代就是通过它的键进行迭代。
max_key = max(stats, key=lambda k: stats[k])
编辑:
来自评论,@ user1274878:
我是 python 新手。你能分步解释你的答案吗?
是的...
最大值(可迭代 [,键])
最大值(arg1,arg2,*args[,键])
返回可迭代的最大项或两个或多个参数中的最大项。
可选key
参数描述了如何比较元素以获得它们之间的最大值:
lambda <item>: return <a result of operation with item>
将比较返回的值。
Python dict 是一个哈希表。dict 的键是声明为键的对象的哈希。由于性能原因,迭代虽然 dict 通过它的键实现为迭代。
因此我们可以使用它来摆脱获取键列表的操作。
在另一个函数中定义的函数称为嵌套函数。嵌套函数可以访问封闭范围的变量。
stats
可通过函数的__closure__
属性获得的变量lambda
,作为指向父作用域中定义的变量值的指针。
例子:
stats = {'a':1000, 'b':3000, 'c': 100}
如果你想用它的键找到最大值,也许以下可能很简单,没有任何相关的功能。
max(stats, key=stats.get)
输出是具有最大值的键。
这是另一个:
stats = {'a':1000, 'b':3000, 'c': 100}
max(stats.iterkeys(), key=lambda k: stats[k])
该函数key
只返回应该用于排名的值并max()
立即返回所需的元素。
key, value = max(stats.iteritems(), key=lambda x:x[1])
如果您不关心价值(我会感到惊讶,但是),您可以这样做:
key, _ = max(stats.iteritems(), key=lambda x:x[1])
与表达式末尾的 [0] 下标相比,我更喜欢元组解包。我从不太喜欢 lambda 表达式的可读性,但发现它比 operator.itemgetter(1) 恕我直言。
鉴于不止一个条目我有最大值。我会列出以最大值为值的键。
>>> stats = {'a':1000, 'b':3000, 'c': 100, 'd':3000}
>>> [key for m in [max(stats.values())] for key,val in stats.iteritems() if val == m]
['b', 'd']
这将为您提供“b”和任何其他最大键。
注意:对于 python 3 使用stats.items()
而不是stats.iteritems()
获取字典的最大键/值stats
:
stats = {'a':1000, 'b':3000, 'c': 100}
>>> max(stats.items(), key = lambda x: x[0])
('c', 100)
>>> max(stats.items(), key = lambda x: x[1])
('b', 3000)
当然,如果只想从结果中获取键或值,可以使用元组索引。例如获取最大值对应的key:
>>> max(stats.items(), key = lambda x: x[1])[0]
'b'
解释
items()
Python 3 中的 dictionary 方法返回字典的视图对象。当这个视图对象被max
函数迭代时,它会产生字典项作为表单的元组(key, value)
。
>>> list(stats.items())
[('c', 100), ('b', 3000), ('a', 1000)]
当您使用lambda
表达式lambda x: x[1]
时,在每次迭代中,x
是这些元组之一(key, value)
。因此,通过选择正确的索引,您可以选择是按键还是按值进行比较。
蟒蛇2
对于 Python 2.2+ 版本,相同的代码也可以使用。但是,最好使用iteritems()
字典方法而不是items()
性能。
笔记
此答案基于对Climbs_lika_Spyder 答案的评论。
使用的代码在 Python 3.5.2 和 Python 2.7.10 上进行了测试。
max(stats, key=stats.get) if stats else None
stats
可能是一个空字典,所以 using onlymax(stats, key=stats.get)
会在这种情况下中断。
d = {'A': 4,'B':10}
min_v = min(zip(d.values(), d.keys()))
# min_v is (4,'A')
max_v = max(zip(d.values(), d.keys()))
# max_v is (10,'B')
我对这些答案中的任何一个都不满意。max
总是选择具有最大值的第一个键。字典可以有多个具有该值的键。
def keys_with_top_values(my_dict):
return [key for (key, value) in my_dict.items() if value == max(my_dict.values())]
发布此答案以防万一它可以帮助某人。请参阅下面的 SO 帖子
通过所选答案中的评论根据迭代解决方案...
在 Python 3 中:
max(stats.keys(), key=(lambda k: stats[k]))
在 Python 2 中:
max(stats.iterkeys(), key=(lambda k: stats[k]))
我来到这里寻找如何mydict.keys()
根据mydict.values()
. 我希望返回前x个值,而不是只返回一个键。
此解决方案比使用max()
函数更简单,您可以轻松更改返回值的数量:
stats = {'a':1000, 'b':3000, 'c': 100}
x = sorted(stats, key=(lambda key:stats[key]), reverse=True)
['b', 'a', 'c']
如果您想要单个排名最高的键,只需使用索引:
x[0]
['b']
如果你想要前两个排名最高的键,只需使用列表切片:
x[:2]
['b', 'a']
更容易理解的方法:
mydict = { 'a':302, 'e':53, 'g':302, 'h':100 }
max_value_keys = [key for key in mydict.keys() if mydict[key] == max(mydict.values())]
print(max_value_keys) # prints a list of keys with max value
输出: ['a', 'g']
现在您只能选择一个键:
maximum = mydict[max_value_keys[0]]
和collections.Counter
你一起做
>>> import collections
>>> stats = {'a':1000, 'b':3000, 'c': 100}
>>> stats = collections.Counter(stats)
>>> stats.most_common(1)
[('b', 3000)]
如果合适,您可以简单地从一个空开始collections.Counter
并添加到它
>>> stats = collections.Counter()
>>> stats['a'] += 1
:
etc.
堆队列是一种通用解决方案,它允许您提取按值排序的前n 个键:
from heapq import nlargest
stats = {'a':1000, 'b':3000, 'c': 100}
res1 = nlargest(1, stats, key=stats.__getitem__) # ['b']
res2 = nlargest(2, stats, key=stats.__getitem__) # ['b', 'a']
res1_val = next(iter(res1)) # 'b'
注意dict.__getitem__
是语法糖调用的方法dict[]
。与 相反,如果找不到密钥dict.get
,它将返回,这在此处不会发生。KeyError
max((value, key) for key, value in stats.items())[1]
以下是从给定字典中提取具有最大值的键的两种简单方法
import time
stats = {
"a" : 1000,
"b" : 3000,
"c" : 90,
"d" : 74,
"e" : 72,
}
start_time = time.time_ns()
max_key = max(stats, key = stats.get)
print("Max Key [", max_key, "]Time taken (ns)", time.time_ns() - start_time)
start_time = time.time_ns()
max_key = max(stats, key=lambda key: stats[key])
print("Max Key with Lambda[", max_key, "]Time taken (ns)", time.time_ns() - start_time)
输出
Max Key [ b ] Time taken (ns) 3100
Max Key with Lambda [ b ] Time taken (ns) 1782
对于较小的输入,使用 Lambda 表达式的解决方案似乎表现更好。
+1 @Aric Coady最简单的解决方案。
还有一种随机选择字典中具有最大值的键之一的方法:
stats = {'a':1000, 'b':3000, 'c': 100, 'd':3000}
import random
maxV = max(stats.values())
# Choice is one of the keys with max value
choice = random.choice([key for key, value in stats.items() if value == maxV])
Counter = 0
for word in stats.keys():
if stats[word]> counter:
Counter = stats [word]
print Counter
怎么样:
max(zip(stats.keys(), stats.values()), key=lambda t : t[1])[0]
对于科学 python 用户,这里是一个使用 Pandas 的简单解决方案:
import pandas as pd
stats = {'a': 1000, 'b': 3000, 'c': 100}
series = pd.Series(stats)
series.idxmax()
>>> b
如果 stats 为空,可以在找到有价值的键之前检查条件,例如,
stats = {'a':1000, 'b':3000, 'c': 100}
max_key = None
if bool(stats):
max_key = max(stats, key=stats.get)
print(max_key)
这可以先检查字典是否为空,然后处理。
>>> b
试试这个:
sorted(dict_name, key=dict_name.__getitem__, reverse=True)[0]
我针对一个非常基本的循环测试了接受的答案和@thewolf最快的解决方案,并且循环比两者都快:
import time
import operator
d = {"a"+str(i): i for i in range(1000000)}
def t1(dct):
mx = float("-inf")
key = None
for k,v in dct.items():
if v > mx:
mx = v
key = k
return key
def t2(dct):
v=list(dct.values())
k=list(dct.keys())
return k[v.index(max(v))]
def t3(dct):
return max(dct.items(),key=operator.itemgetter(1))[0]
start = time.time()
for i in range(25):
m = t1(d)
end = time.time()
print ("Iterating: "+str(end-start))
start = time.time()
for i in range(25):
m = t2(d)
end = time.time()
print ("List creating: "+str(end-start))
start = time.time()
for i in range(25):
m = t3(d)
end = time.time()
print ("Accepted answer: "+str(end-start))
结果:
Iterating: 3.8201940059661865
List creating: 6.928712844848633
Accepted answer: 5.464320182800293
如果您有多个具有相同值的键,例如:
stats = {'a':1000, 'b':3000, 'c': 100, 'd':3000, 'e':3000}
您可以获得一个包含所有最大值的键的集合,如下所示:
from collections import defaultdict
from collections import OrderedDict
groupedByValue = defaultdict(list)
for key, value in sorted(stats.items()):
groupedByValue[value].append(key)
# {1000: ['a'], 3000: ['b', 'd', 'e'], 100: ['c']}
groupedByValue[max(groupedByValue)]
# ['b', 'd', 'e']