很多相关问题< x86指令缓存如何同步?> 提到 x86 应该在自修改代码中正确处理 i-cache 同步。我编写了以下代码,它可以在与执行交错的不同线程中打开和关闭函数调用。我使用比较和交换操作作为额外的保护,以便修改是原子的。但是我遇到了间歇性崩溃(SIGSEGV、SIGILL)并且分析核心转储让我怀疑处理器是否正在尝试执行部分更新的指令。下面给出代码和分析。可能是我在这里遗漏了一些东西。让我知道是否是这种情况。
切换.c
#include <stdio.h>
#include <inttypes.h>
#include <time.h>
#include <pthread.h>
#include <sys/mman.h>
#include <errno.h>
#include <unistd.h>
int active = 1; // Whether the function is toggled on or off
uint8_t* funcAddr = 0; // Address where function call happens which we need to toggle on/off
uint64_t activeSequence = 0; // Byte sequence for toggling on the function CALL
uint64_t deactiveSequence = 0; // NOP byte sequence for toggling off the function CALL
inline int modify_page_permissions(uint8_t* addr) {
long page_size = sysconf(_SC_PAGESIZE);
int code = mprotect((void*)(addr - (((uint64_t)addr)%page_size)), page_size,
PROT_READ | PROT_WRITE | PROT_EXEC);
if (code) {
fprintf(stderr, "mprotect was not successfull! code %d\n", code);
fprintf(stderr, "errno value is : %d\n", errno);
return 0;
}
// If the 8 bytes we need to modify straddles a page boundary make the next page writable too
if (page_size - ((uint64_t)addr)%page_size < 8) {
code = mprotect((void*)(addr-((uint64_t)addr)%page_size+ page_size) , page_size,
PROT_READ | PROT_WRITE | PROT_EXEC);
if (code) {
fprintf(stderr, "mprotect was not successfull! code %d\n", code);
fprintf(stderr, "errno value is : %d\n", errno);
return 0;;
}
}
return 1;
}
void* add_call(void* param) {
struct timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = 50000;
while (1) {
if (!active) {
if (activeSequence != 0) {
int status = modify_page_permissions(funcAddr);
if (!status) {
return 0;
}
uint8_t* start_addr = funcAddr - 8;
fprintf(stderr, "Activating foo..\n");
uint64_t res = __sync_val_compare_and_swap((uint64_t*) start_addr,
*((uint64_t*)start_addr), activeSequence);
active = 1;
} else {
fprintf(stderr, "Active sequence not initialized..\n");
}
}
nanosleep(&ts, NULL);
}
}
int remove_call(uint8_t* addr) {
if (active) {
// Remove gets called first before add so we initialize active and deactive state byte sequences during the first call the remove
if (deactiveSequence == 0) {
uint64_t sequence = *((uint64_t*)(addr-8));
uint64_t mask = 0x0000000000FFFFFF;
uint64_t deactive = (uint64_t) (sequence & mask);
mask = 0x9090909090000000; // We NOP 5 bytes of CALL instruction and leave rest of the 3 bytes as it is
activeSequence = sequence;
deactiveSequence = deactive | mask;
funcAddr = addr;
}
int status = modify_page_permissions(addr);
if (!status) {
return -1;
}
uint8_t* start_addr = addr - 8;
fprintf(stderr, "Deactivating foo..\n");
uint64_t res = __sync_val_compare_and_swap((uint64_t*)start_addr,
*((uint64_t*)start_addr), deactiveSequence);
active = 0;
// fprintf(stderr, "Result : %p\n", res);
}
}
int counter = 0;
void foo(int i) {
// Use the return address to determine where we need to patch foo CALL instruction (5 bytes)
uint64_t* addr = (uint64_t*)__builtin_extract_return_addr(__builtin_return_address(0));
fprintf(stderr, "Foo counter : %d\n", counter++);
remove_call((uint8_t*)addr);
}
// This thread periodically checks if the method is inactive and if so reactivates it
void spawn_add_call_thread() {
pthread_t tid;
pthread_create(&tid, NULL, add_call, (void*)NULL);
}
int main() {
spawn_add_call_thread();
int i=0;
for (i=0; i<1000000; i++) {
// fprintf(stderr, "i : %d..\n", i);
foo(i);
}
fprintf(stderr, "Final count : %d..\n\n\n", counter);
}
核心转储分析
Program terminated with signal 4, Illegal instruction.
#0 0x0000000000400a28 in main () at toggle.c:123
(gdb) info frame
Stack level 0, frame at 0x7fff7c8ee360:
rip = 0x400a28 in main (toggle.c:123); saved rip 0x310521ed5d
source language c.
Arglist at 0x7fff7c8ee350, args:
Locals at 0x7fff7c8ee350, Previous frame's sp is 0x7fff7c8ee360
Saved registers:
rbp at 0x7fff7c8ee350, rip at 0x7fff7c8ee358
(gdb) disas /r 0x400a28,+30
Dump of assembler code from 0x400a28 to 0x400a46:
=> 0x0000000000400a28 <main+64>: ff (bad)
0x0000000000400a29 <main+65>: ff (bad)
0x0000000000400a2a <main+66>: ff eb ljmpq *<internal disassembler error>
0x0000000000400a2c <main+68>: e7 48 out %eax,$0x48
(gdb) disas /r main
Dump of assembler code for function main:
0x00000000004009e8 <+0>: 55 push %rbp
...
0x0000000000400a24 <+60>: 89 c7 mov %eax,%edi
0x0000000000400a26 <+62>: e8 11 ff ff ff callq 0x40093c <foo>
0x0000000000400a2b <+67>: eb e7 jmp 0x400a14 <main+44>
因此可以看出,指令指针似乎位于 CALL 指令内的地址内,处理器显然正试图执行该未对齐的指令,从而导致非法指令错误。