我有一个冯诺依曼方程,它看起来像: dr/dt = - i [H, r],其中 r 和 H 是复数的方阵,我需要使用 python 脚本找到 r(t) 。
是否有任何标准仪器来整合这些方程?
当我以向量作为初始值求解另一个 aquation 时,例如 Schrodinger 方程: dy/dt = - i H y,我使用了 scipy.integrate.ode 函数('zvode'),但尝试对 von Neumann 使用相同的函数方程给了我以下错误:
**scipy/integrate/_ode.py:869: UserWarning: zvode: Illegal input detected. (See printed message.)
ZVODE-- ZWORK length needed, LENZW (=I1), exceeds LZW (=I2)
self.messages.get(istate, 'Unexpected istate=%s' % istate))
In above message, I1 = 72 I2 = 24**
这是代码:
def integrate(r, t0, t1, dt):
e = linspace(t0, t1, (t1 - t0) / dt + 10)
g = linspace(t0, t1, (t1 - t0) / dt + 10)
u = linspace(t0, t1, (t1 - t0) / dt + 10)
while r.successful() and r.t < t1:
r.integrate(r.t + dt)
e[r.t / dt] = abs(r.y[0][0]) ** 2
g[r.t / dt] = abs(r.y[1][1]) ** 2
u[r.t / dt] = abs(r.y[2][2]) ** 2
return e, g, u
# von Neumann equation's
def right_part(t, rho):
hamiltonian = (h / 2) * array(
[[delta, omega_s, omega_p / 2.0 * sin(t * w_p)],
[omega_s, 0.0, 0.0],
[omega_p / 2.0 * sin(t * w_p), 0.0, 0.0]],
dtype=complex128)
return (dot(hamiltonian, rho) - dot(rho, hamiltonian)) / (1j * h)
def create_integrator():
r = ode(right_part).set_integrator('zvode', method='bdf', with_jacobian=False)
psi_init = array([[1.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]], dtype=complex128)
t0 = 0
r.set_initial_value(psi_init, t0)
return r, t0
def main():
r, t0 = create_integrator()
t1 = 10 ** -6
dt = 10 ** -11
e, g, u = integrate(r, t0, t1, dt)
main()