我正在创建一个简单的矩阵乘法程序,在英特尔至强融核架构上运行。
在多次尝试自动矢量化之后,为了获得更好的性能,我不得不使用 Intel Intrinsics。
到目前为止,矩阵大小是由源代码中的#define 给出的,但是当我尝试在运行时给出它时,性能会大大降低。
源代码如下:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <stddef.h>
#include <chrono>
#include <ctime>
#include <mmintrin.h>
#include <xmmintrin.h> // SSE
#include <pmmintrin.h> // SSE2
#include <emmintrin.h> // SSE3
#include <immintrin.h>
#include <zmmintrin.h>
#define ALIGNMENT 64
#ifndef SIZE
#define SIZE 960
#endif
#define vZero(c) {(c) = _mm512_setzero_pd();}
#define start_time() \
auto start = std::chrono::high_resolution_clock::now();
/** Shows the elapsed time. See start_time for usage*/
#define elapsed_time(STRING) \
auto elapsed = std::chrono::high_resolution_clock::now() - start; \
long long microseconds = std::chrono::duration_cast<std::chrono::microseconds>(elapsed).count(); \
printf(#STRING":%lld\n", microseconds);
void recTranspose(double *__restrict__ a, double *__restrict__ aT, const int n, const int k, const int lda, const int ldat){
if (n*k <= 128) {
for(int i = 0; i < n; i++) {
for(int j = 0; j < k; j++) {
aT[j*ldat+i] = a[i*lda+j];
}
}
//printf("Reached _|_");
return;
}
if(k > n) {
recTranspose(a, aT, n, (k+1)/2, lda, ldat);
recTranspose(&a[(k+1)/2], &aT[(k+1)/2*ldat], n, k-((k+1)/2), lda, ldat);
} else {
recTranspose(a, aT, (n+1)/2, k, lda, ldat);
recTranspose(&a[(n+1)/2*lda], &aT[(n+1)/2], n- (n+1)/2, k, lda, ldat);
}
}
/** Calculates 8 cols and 30 rows of c.*/
inline void eightbythirty(double *__restrict__ a, double *__restrict__ b, double * __restrict__ c, const int size) {
__m512d c0, c1, c2, c3, c4, c5, c6, c7, c8, c9;
__m512d c10, c11, c12, c13, c14, c15, c16, c17, c18, c19;
__m512d c20, c21, c22, c23, c24, c25, c26, c27, c28, c29;
vZero(c0); vZero(c1); vZero(c2); vZero(c3); vZero(c4); vZero(c5);
vZero(c6); vZero(c7); vZero(c8); vZero(c9); vZero(c10); vZero(c11);
vZero(c12); vZero(c13); vZero(c14); vZero(c15); vZero(c16); vZero(c17);
vZero(c18); vZero(c19); vZero(c20); vZero(c21); vZero(c22); vZero(c23);
vZero(c24); vZero(c25); vZero(c26); vZero(c27); vZero(c28); vZero(c29);
__assume_aligned(a, ALIGNMENT);
__assume_aligned(b, ALIGNMENT);
__assume_aligned(c, ALIGNMENT);
__assume(size%16==0);
for(int i = 0; i < size; i++) {
const __m512d bv = _mm512_load_pd(b+i*size);
c0 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+0, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c0);
c1 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+1, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c1);
c2 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+2, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c2);
c3 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+3, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c3);
c4 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+4, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c4);
c5 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+5, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c5);
c6 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+6, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c6);
c7 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+7, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c7);
c8 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+8, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c8);
c9 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+9, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c9);
c10 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+10, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0),bv, c10);
c11 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+11, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0),bv, c11);
c12 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+12, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c12);
c13 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+13, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c13);
c14 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+14, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c14);
c15 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+15, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c15);
c16 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+16, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c16);
c17 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+17, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c17);
c18 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+18, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c18);
c19 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+19, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c19);
c20 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+20, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c20);
c21 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+21, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c21);
c22 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+22, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c22);
c23 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+23, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c23);
c24 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+24, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c24);
c25 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+25, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c25);
c26 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+26, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c26);
c27 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+27, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c27);
c28 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+28, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c28);
c29 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+29, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c29);
}
_mm512_storenr_pd(c+0*size, c0);
_mm512_storenr_pd(c+1*size, c1);
_mm512_storenr_pd(c+2*size, c2);
_mm512_storenr_pd(c+3*size, c3);
_mm512_storenr_pd(c+4*size, c4);
_mm512_storenr_pd(c+5*size, c5);
_mm512_storenr_pd(c+6*size, c6);
_mm512_storenr_pd(c+7*size, c7);
_mm512_storenr_pd(c+8*size, c8);
_mm512_storenr_pd(c+9*size, c9);
_mm512_storenr_pd(c+10*size, c10);
_mm512_storenr_pd(c+11*size, c11);
_mm512_storenr_pd(c+12*size, c12);
_mm512_storenr_pd(c+13*size, c13);
_mm512_storenr_pd(c+14*size, c14);
_mm512_storenr_pd(c+15*size, c15);
_mm512_storenr_pd(c+16*size, c16);
_mm512_storenr_pd(c+17*size, c17);
_mm512_storenr_pd(c+18*size, c18);
_mm512_storenr_pd(c+19*size, c19);
_mm512_storenr_pd(c+20*size, c20);
_mm512_storenr_pd(c+21*size, c21);
_mm512_storenr_pd(c+22*size, c22);
_mm512_storenr_pd(c+23*size, c23);
_mm512_storenr_pd(c+24*size, c24);
_mm512_storenr_pd(c+25*size, c25);
_mm512_storenr_pd(c+26*size, c26);
_mm512_storenr_pd(c+27*size, c27);
_mm512_storenr_pd(c+28*size, c28);
_mm512_storenr_pd(c+29*size, c29);
}
int main(int argc, const char ** argv) {
#ifdef SIZES
const int size = SIZE;
#else
const int size = atoi(argv[1]);
#endif
void* p = malloc((sizeof(double)*5*size*size) + ALIGNMENT-1);
double *__restrict__ a = (double*)(((size_t)p + ALIGNMENT-1) / ALIGNMENT * ALIGNMENT);
double *__restrict__ aT = (double*) a+size*size;
double *__restrict__ b = aT+size*size;
double *__restrict__ c = b+size*size;
double *__restrict__ d = c+size*size;
srand(time(NULL));
for(int i = 0; i < size; i++) {
for(int j = 0; j < size; j++) {
a[i*size+j] = (double) (rand()%20);
}
for(int j2=0; j2<size; j2++){
c[i*size+j2] = 0.0;
}
}
for(int i = 0; i < size; i++) {
for(int j = 0; j < size; j++) {
b[i*size+j] = (double) (rand()%20);
}
}
start_time();
recTranspose(a, aT, size, size, size, size);
for(int i = 0; i < size; i+=30) {
for(int j = 0; j < size; j+=8) {
eightbythirty(&aT[i], &b[j], &c[i*size+j], size);
}
}
elapsed_time();
double gflops = 2.0*size*size*size*1.0e-03/(microseconds);
printf("Gflops: %f\n", gflops);
for(int i = 0; i < size; i++) {
for(int j = 0; j < size; j++) {
double s = 0;
for(int u = 0; u < size; u++) {
s += a[i*size+u] * b[u*size+j];
}
d[i*size+j] = s;
}
}
int error = 0;
for(int i = 0; i < size; i++) {
for(int j = 0; j < size; j++) {
if(abs(c[i*size+j] - d[i*size+j]) > 1) {
printf("Error at %d %d , %f instead of %f\n", i, j, c[i*size+j], d[i*size+j]);
error++;
if(error > 16) return 0;
}
}
}
printf("OK\n");
}
例如,尺寸为 960(目前它仅适用于尺寸为 30*8 的倍数):
如果我使用给定大小的编译时间进行编译: icc -mmic -O3 -restrict -std=c++11 -DSIZES -DSIZE=960 mmul.cpp -o mmul.o
经过时间:0.460745s Gflops:3.840458
如果我使用运行时给定大小进行编译: icc -mmic -O3 -restrict -std=c++11 mmul.cpp -o mmul.o
经过时间:2.204564s Gflops:0.802640
我认为这可能是 icc 无法识别内存访问模式的预取问题。查看生成的 asm 源代码,“编译时”版本中 vprefetch 指令的数量要高得多。
有趣的事实:在编译时版本中检查乘法的正确结果(代码末尾的两个 for 循环,第 178-197 行)要慢得多!
有什么想法吗?我尝试了#pragma loop_count,但它似乎没用,而且手动内部预取似乎也不是很有效。
提前感谢您的任何回答。
问候,卢卡