我一直在研究依赖类型,我了解以下内容:
- 为什么全称量化被表示为依赖函数类型。
∀(x:A).B(x)
意思是“对于所有x
类型A
,都有一个类型的值B(x)
”。因此,它被表示为一个函数,当给定任何x
类型的值时,它返回一个类型的A
值B(x)
。 - 为什么存在量化被表示为依赖对类型。
∃(x:A).B(x)
意思是“存在一个x
类型的类型A
,它有一个类型的值B(x)
”。因此,它表示为一对,其第一个元素是type的特定值,其第二个元素是 type 的值。x
A
B(x)
旁白:有趣的是,普遍量化总是与物质暗示一起使用,而存在量化总是与逻辑连词一起使用。
无论如何,关于依赖类型的维基百科文章指出:
依赖类型的对立面是依赖对类型、依赖总和类型或sigma-type。它类似于联积或不相交的联合。
对类型(通常是乘积类型)如何类似于不相交的联合(总和类型)?这一直让我感到困惑。
此外,依赖函数类型与产品类型有何相似之处?