我正在运行逻辑回归,并且在使用 Patsy 的 API 来准备大于小样本的数据时遇到问题。
dmatrices
直接在 DataFrame 上使用该函数,我会遇到这个突然的错误(请注意,在我的笔记本电脑上遇到这个问题后,我启动了一个具有 300GB RAM 的 EC2,并得到了同样的错误):
Traceback (most recent call last):
File "My_File.py", line 22, in <module>
df, return_type="dataframe")
File "/root/anaconda/lib/python2.7/site-packages/patsy/highlevel.py", line 297, in dmatrices
NA_action, return_type)
File "/root/anaconda/lib/python2.7/site-packages/patsy/highlevel.py", line 156, in do_highlevel_design
return_type=return_type)
File "/root/anaconda/lib/python2.7/site-packages/patsy/build.py", line 989, in build_design_matrices
results.append(builder._build(evaluator_to_values, dtype))
File "/root/anaconda/lib/python2.7/site-packages/patsy/build.py", line 821, in _build
m = DesignMatrix(np.empty((num_rows, self.total_columns), dtype=dtype),
MemoryError
所以,我梳理了Patsy 的文档,发现了这个宝石:
patsy.incr_dbuilder(formula_like, data_iter_maker, eval_env=0)
Construct a design matrix builder incrementally from a large data set.
但是,该方法的文档很少,源代码也基本上没有注释。
我已经到了这个代码:
def iter_maker():
with open("test.tsv", "r") as f:
reader = csv.DictReader(f, delimiter="\t")
for row in reader:
yield(row)
y, dta = incr_dbuilders("s ~ C(x) + C(y):C(rgh) + \
C(z):C(f) + C(r):C(p) + C(q):C(w) + \
C(zr):C(rt) + C(ff):C(djjj) + C(hh):C(tt) + \
C(bb):lat + C(jj):lng + C(ee):C(bb) + C(qq):C(uu)",
iter_maker)
df = dmatrix(dta, {}, 0, "drop", return_type="dataframe")
但我收到PatsyError: Error evaluating factor: NameError: name 'ff' is not defined
这是被抛出的,因为 _try_incr_builders(从 dmatrix 调用)在 highlevel.py的第 151 行返回 None
使用这些 Patsy 函数准备数据的正确方法是什么?您可能拥有的任何示例或指导都会有所帮助。