不确定我是在做一些愚蠢的事情还是 pymc3 有错误,但是尝试将 T 分布拟合到正常值我得到了自由度数(0.18 到 0.25,我期望值很高,至少 4-5)。当然,如果我尝试具有合理数量的自由度(例如 3 或 5)的 T 分布,我会得到同样的错误。
import pymc3 as pm
Nsample = 200000
tst = np.random.normal(loc = 1e4, scale = 5e4, size = 250)
with pm.Model() as m:
mean = pm.Normal('mean',mu=0,sd = 1e5)
sigma = pm.Flat('sigma') # I tried uniform, gamma, exponential
df = pm.Flat("df") # the same
v = pm.T("pl",nu=df,mu = mean, lam = 1.0/sigma, observed = tst)
start = {'df':5,'mean': 1e4, 'sigma':5e4} #start = pm.find_MAP()
step = pm.Metropolis()
trace = pm.sample(Nsample, step,start=start, progressbar=True)
pm.traceplot(trace[100000:],vars = ['df', 'sigma', 'mean']);
你能建议一些修复(改变先验,抽样方法)吗?