我正在尝试从(大型)文本文档(TF-IDF 向量)集合中在 MLLib 上运行 KMeans。文档通过 Lucene 英语分析器发送,稀疏向量由 HashingTF.transform() 函数创建。无论我使用的并行度如何(通过 coalesce 函数),KMeans.train 总是在下面返回一个 OutOfMemory 异常。关于如何解决这个问题的任何想法?
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
at scala.reflect.ManifestFactory$$anon$12.newArray(Manifest.scala:138)
at scala.reflect.ManifestFactory$$anon$12.newArray(Manifest.scala:136)
at breeze.linalg.Vector$class.toArray(Vector.scala:80)
at breeze.linalg.SparseVector.toArray(SparseVector.scala:48)
at breeze.linalg.Vector$class.toDenseVector(Vector.scala:75)
at breeze.linalg.SparseVector.toDenseVector(SparseVector.scala:48)
at breeze.linalg.Vector$class.toDenseVector$mcD$sp(Vector.scala:74)
at breeze.linalg.SparseVector.toDenseVector$mcD$sp(SparseVector.scala:48)
at org.apache.spark.mllib.clustering.BreezeVectorWithNorm.toDense(KMeans.scala:422)
at org.apache.spark.mllib.clustering.KMeans$$anonfun$initKMeansParallel$1.apply(KMeans.scala:285)
at org.apache.spark.mllib.clustering.KMeans$$anonfun$initKMeansParallel$1.apply(KMeans.scala:284)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)
at org.apache.spark.mllib.clustering.KMeans.initKMeansParallel(KMeans.scala:284)
at org.apache.spark.mllib.clustering.KMeans.runBreeze(KMeans.scala:143)
at org.apache.spark.mllib.clustering.KMeans.run(KMeans.scala:126)
at org.apache.spark.mllib.clustering.KMeans$.train(KMeans.scala:338)
at org.apache.spark.mllib.clustering.KMeans$.train(KMeans.scala:348)